Coherent Radiation Generated by Bunches of Charged Particles

Part of the Springer Tracts in Modern Physics book series (STMP, volume 239)


In one of the first works [1], where synchrotron radiation generated by an electron bunch containing N e electrons was considered, it was mentioned that, in the range of wavelengths comparable with the length of the electron bunch B, radiation becomes coherent, i.e., the intensity of radiation generated by the bunch depends quadratically on the number of electrons in the bunch (on the “population” of the bunch).


Form Factor Synchrotron Radiation Electron Bunch Diffraction Radiation Ultrarelativistic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Michel, C.F.: Intense coherent submillimeter radiation in electron storage ring. Phys. Rev. Lett. 48, 580 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Nodvick, J.S., Saxon, D.S.: Suppression of coherent radiation by electrons in a synchrotron. Phys. Rev. 96, 180 (1954)ADSCrossRefGoogle Scholar
  3. 3.
    Blum, E.B., Happek, U., Sievers, A.J.: Observation of coherent synchrotron radiation at the Cornell linac. Nucl. Instrum. Methods Phys. Res. A 307, 568 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Shibata, Y., Ishi, K., Takahashi, T. et al.: Observation of coherent synchrotron, Cherenkov and wake-field radiation at millimeter wave lengths using an L-band linear accelerator. Phys. Rev. A. 44, R3449 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Alferov, D.F., Bashmakov, Yu.A., Bessonov, E.G.: Theory of coherent undulator radiation. Sov. Zhurnal Tekhnicheskoi Fiziki 48, 1598 (1978)Google Scholar
  6. 6.
    Garibyan, G.M., Yang, C.: X-ray Transition Radiation. Yerevan, Armenia (1983)Google Scholar
  7. 7.
    Op’t, W.P.E.M., Smorenburg, P.W., van Oudheusden, T. et al.: Theory of coherent radiation generated by ellipsoidal electron bunches. Phys. Rev. ST-AB 10, 012802 (2007)ADSGoogle Scholar
  8. 8.
    Bolotovskiy, B.M., Serov, A.V.: Transition radiation of lengthy system of charges. Tech. Phys. 47, 1 (2002)CrossRefGoogle Scholar
  9. 9.
    Nakazato, T., Oyamada, M., Niimura, N. et al.: Observation of coherent synchrotron radiation. Phys. Rev. Lett. 63, 1245 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Bosch, R.A.: Extraction of edge radiation within a straight section of Aladdin. Rev. Sci. Instrum. Rev. Sci. Instrum. 73, 1423 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Baier, V.N., Katkov, V.M., Fadin, V.N.: Radiation from Relativistic Electrons. Moscow, Atomizdat (in Russian) (1973)Google Scholar
  12. 12.
    Neil, G.P., Carr, G.L., Gubeli Joseph, F. et al.: Production of high power femtosecond terahertz radiation. Nucl. Instrum. Methods Phys. Res. A 507, 537 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Potylitsyn, A.P.: Transition radiation and diffraction radiation. Similarities and differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Williams, G.P.: Filling the THz gap-high power sources and applications. Rep. Prog. Phys. 69, 301 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Neil, G.P.: FEL oscillators. Proceedings of the 2003 Particle Accelerator Conference, p. 181 (2003)Google Scholar
  16. 16.
    Carr, G.L., Martin, M.C., McKinney, W.R. et al.: High-power terahertz radiation from relativistic electrons. Nature 420, 153 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Potylitsyn, A.P.: Thomson scattering of coherent diffraction radiation by an electron bunch. Phys. Rev. E 60, 2272 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Xiang, D., Huang, W-H.: Ultrashort electron bunch length measurement with diffraction radiation deflector. Phys. Rev. ST Accel. Beams 10(1), 012801 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Stupakov, G.V.: Geometrical Wake of a Smooth Flat Collimator. SLAC-PUB-96-7167 (1996)Google Scholar
  20. 20.
    Bosch, R.A.: Shielding of infrared edge and synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 482, 789 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Potylitsyn, A.P.: Scattering of coherent diffraction radiation by a short electron bunch. Nucl. Instrum. Methods Phys. Res. A 455, 213 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Brownell, J.H., Walsh, J., Doucas, G.: Spontaneous Smith-Purcell radiation described through induced surface currents. Phys. Rev. E 57, 1075 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Shibata, Y., Hasebe, S., Ishi, K. et al.: Coherent Smith-Purcell radiation in the millimeter- wave region from a short-bunch beam of relativistic electrons. Phys. Rev. E 57, 1061 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Nguyen, D.C.: Design of a Smith-Purcell radiation bunch length diagnostic. Nucl. Instrum. Methods Phys. Res. A 393, 514 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Lampel, M.C.: Advanced Accelerator Concepts, 8th Workshop., CP 472, 785, (1999)Google Scholar
  26. 26.
    Korbly, S.E., Brown, W.J., Shapiro, M.A. et al.: Proceedings of the 2001 Particle Accelerator Conference, p. 2347 (2001)Google Scholar
  27. 27.
    Doria, A., Gallerano, G.P., Giovenale, E. et al.: Can coherent Smith–Purcell radiation be used to determine the shape of an electron bunch? Nucl. Instrum. Methods Phys. Res. A 483, 263 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Blackmore, V., Doucas, G., Perr, C. et al.: First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith–Purcell radiation. Phys. Rev. ST-AB 12, 032803 (2009)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.National Research Nuclear University, MEPhIMoscowRussia
  3. 3.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations