Skip to main content

Diffraction Radiation at Optical and Lower Frequencies

  • Chapter
  • First Online:
Diffraction Radiation from Relativistic Particles

Abstract

Calculation of the characteristics of radiation generated when a charged particle moves through a circular hole in an infinitely thin perfectly conducting screen is one of the most investigated problems in the theory of diffraction radiation. Such a screen can be a thin metal plate; in this case, radiation should be considered at frequencies below plasmon frequencies, i.e., at optical, infrared, millimeter, etc. frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobrinev, V., Braginskiy, V.: Radiation of the point charge moving along axis of round aperture in infinite perfect conducting surface. Dokl. Akad. Nauk. USSR 123(4):634 (1958)

    Google Scholar 

  2. Dnestrovskiy, Yu.N., Kostomarov, D.P.: Radiation of modulated beam of charged particles moving across round aperture in flat screen. Sov. Phys. Dokl. 4, 132 (1959)

    ADS  Google Scholar 

  3. Dnestrovskiy, Yu.N., Kostomarov D.P.: Radiation of ultra relativistic charges moving across round aperture in flat screen. Sov. Phys. Dokl. 4, 158 (1959)

    ADS  Google Scholar 

  4. Khachatryan, B.V.: Mathematical proof of formulae of diffraction radiation. Izv. Arm. Akad. Nauk, 18 133 (1965)

    Google Scholar 

  5. Jackson, J.D.: The Classical Electrodynamics. New York, NY (1998)

    Google Scholar 

  6. Stratton, J.A.: Theory of Electromagnetism. McGraw-Hill, New York, NY (1941)

    Google Scholar 

  7. Stratton, J.A., Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99 (1939)

    Article  ADS  Google Scholar 

  8. Ter-Mikaelyan, M.L., Khachatryan, B.V.: Diffraction radiation of fast-moving particles. Dokl. Akad. Nauk. ASSR 40(XL), 13 (1965)

    Google Scholar 

  9. Ter-Mikaelyan, M.L.: High-Energy Electromagnetic Processes in Condensed Media. Wiley-Interscience, New York, NY (1972)

    Google Scholar 

  10. Xiang, D., Huang, W.-H.: Properties of diffraction radiation in practical conditions: Finite size target effect, surface roughness and pre-wave zone. Nucl. Instrum. Methods Phys. Res. B 248, 163 (2006)

    Article  ADS  Google Scholar 

  11. Potylitsyn, A.P.: Scattering of coherent diffraction radiation by a short electron bunch. Nucl. Instrum. Methods Phys. Res. A 455, 213 (2000)

    Article  ADS  Google Scholar 

  12. Masullo, M.R., Panariello, G., Schettino, F., Vaccaro, V.G.: Longitudinal coupling impedance of a plane conducting ring. Phys. Rev. ST-AB 2, 124402 (1999)

    ADS  Google Scholar 

  13. Gianfelice, E., Palumbo, L., Vaccaro, V.G., Verolino, L.: A canonical problem for the understanding of the energy diffraction losses in high-energy accelerators. Nuovo Cimeto A. 104, 885 (1991)

    Article  ADS  Google Scholar 

  14. Bolotovskiy, B.M., Galst’yan, E.A.: Diffraction and diffraction radiation. Phys.-Uspekhi 43, 755 (2000)

    Article  ADS  Google Scholar 

  15. Weinstein, L.A.: Electromagnetic Waves. Radio i Svyaz, Moskow (in Russian) (1988)

    Google Scholar 

  16. Shulga, N.F., Dobrovolsky, S.N.: Theory of relativistic-electron transition radiation in a thin metal target. JETP 90(4), 579 (2000)

    Article  ADS  Google Scholar 

  17. Dobrovolsky, S.N., Shul’ga, N.F.: Transversal spatial distribution of transition radiation by relativistic electron in the formation zone by the dotted detector. Nucl. Instrum. Methods Phys. Res. B 201, 123 (2002)

    Article  ADS  Google Scholar 

  18. Dobrovolsky, S.N., Shul’ga, N.F.: Transition and diffraction radiation by relativistic electrons in a pre-wave zone. Proceedings of EPAC 2002, Paris, France, p. 1867 (2002)

    Google Scholar 

  19. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, (1987)

    Google Scholar 

  20. Weinstein, L.A.: Theory of Diffraction and the Factorization Method. The Golden Press Boulder, Colorado (1969)

    Google Scholar 

  21. Bolotovskiy, B.M., Voskresenskiy, G.V.: Diffraction radiation. Phys.-Uspekhi 9, 73 (1966)

    Article  ADS  Google Scholar 

  22. Kazantsev, A.P., Surdutovich, G.I.: Radiation of a charged particle passing close to a metal screen. Sov. Phys. Dokl. 7, 990 (1963)

    ADS  Google Scholar 

  23. Potylitsyn, A.P.: Transition radiation and diffraction radiation. Similarities and differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)

    Article  ADS  Google Scholar 

  24. Potylitsyna-Kube, N.A., Artru, X.: Diffraction radiation from ultrarelativictic particles passing through a slit. Determination of the electron beam divergence. Nucl. Instrum. Methods Phys. Res. B, 201, 172 (2003)

    Article  ADS  Google Scholar 

  25. Akhiezer, A.I., Berestetzkiy, V.B.: Quantum Electrodynamics. Moskow, Nauka (in Russian) (1989)

    Google Scholar 

  26. Sedrakyan, D.M.: Diffraction radiation of one-dimensional source moving near edge of perfect conducting semi-surface. Izv. Arm. Akad. Nauk 16, 115 (1963)

    MATH  Google Scholar 

  27. Sedrakyan, D.M.: Radiation of charged particle moving across metal screen. Izv. Arm. Akad. Nauk 17, 103 (1964)

    MATH  Google Scholar 

  28. Xiang, D., Huang, W-H., Lin, Y-Z. et al.: Wake of a beam passing through a diffraction radiation target. Phys. Rev. ST Accel. Beams 11(2), 024001 (2008)

    Article  ADS  Google Scholar 

  29. Karlovets, D.V., Potylitsyn, A.P.: On the theory of diffraction radiation. JETP 107, 755 (2008)

    Article  ADS  Google Scholar 

  30. Castellano. M.: A new non-intercepting beam size diagnostics using diffraction radiation from a slit. Nucl. Instrum. Methods Phys. Res. A 34, 275 (1997)

    Article  ADS  Google Scholar 

  31. Potylitsyn, A.P., Potylitsyna, N.A.: Diffraction radiation of ultra relativistic particles at moving across sloping slit. Russ. Phys. J. 43(4), 303 (2000)

    Article  Google Scholar 

  32. Verzilov, V.A.: Transition radiation in the pre-wave zone. Phys. Lett. A 273, 135 (2000)

    Article  ADS  Google Scholar 

  33. Fiorito, R.B., Rule, D.W.: Diffraction radiation diagnostics for moderate to high energy beams. Nucl. Instrum. Methods Phys. Res. B 173, 67 (2001)

    Article  ADS  Google Scholar 

  34. Potylitsyn, A.P.: Coherent diffraction radiation interferometry and short bunch length measurements. Nucl. Instrum. Methods Phys. Res. B 227, 191 (2005)

    Article  ADS  Google Scholar 

  35. Pafomov, V.E.: Radiation of charged particle at boundary. Trudy FIAN 44, 28 (in Russian) (1969)

    Google Scholar 

  36. Korkhmazyan, N.A.: Transition radiation at grazing incidence of charge. Izv. Arm. Akad. Nauk. Fizika 11, 7 (1958)

    Google Scholar 

  37. Potylitsyn, A.P.: Linear polarization of diffraction radiation from slit and beam size determination. Nucl. Instrum. Methods Phys. Res. B 201, 161 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Petrovich Potylitsyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potylitsyn, A.P., Ryazanov, M.I., Strikhanov, M.N., Tishchenko, A.A. (2010). Diffraction Radiation at Optical and Lower Frequencies. In: Diffraction Radiation from Relativistic Particles. Springer Tracts in Modern Physics, vol 239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12513-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12513-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12512-6

  • Online ISBN: 978-3-642-12513-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics