General Properties of Diffraction Radiation

Part of the Springer Tracts in Modern Physics book series (STMP, volume 239)


As mentioned above, diffraction radiation can be considered as radiation generated by polarization currents induced in a medium by the field of a moving charge. The distance between the charge trajectory and medium surface is usually much larger than the mean intermolecular distance in the medium.


Relative Permittivity Coherence Length Electron Number Density Polarization Current Fast Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Smith, S.J., Purcell, E.M.: Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)ADSCrossRefGoogle Scholar
  2. 2.
    Shestopalov, V.P.: Diffraction electronics. Kharkov, Ukraine (1976)Google Scholar
  3. 3.
    Barnes, C.W., Dedrick, K.G.: Radiation by an electron beam interacting with a diffraction grating. J. Appl. Phys. 37, 411 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    Kazantsev, A.P., Surdutovich, G.I.: Radiation of a charged particle flying by metal screen. Sov. Phys. Dokl. 7, 990 (1963)ADSGoogle Scholar
  5. 5.
    Bolotovskiy, B.M., Voskresenskiy, G.V.: Radiation of charged string flying by metal screen. Sov. Phys. JETP 34, 11 (1964)Google Scholar
  6. 6.
    Glass, S.J., Mendlowitz, H.: Quantum theory of Smith-Purcell experiment. Phys. Rev. 174, 57 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    Bolotovskiy, B.M., Voskresenskiy, G.V.: Diffraction radiation. Sov. Phys. Usp. 94, 377 (1968)Google Scholar
  8. 8.
    Lalor, E.: Three-dimensional theory of Smith-Purcell effect. Phys. Rev. A. 8, 435 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    Potylitsyn, A.P.: Transition radiation and diffraction radiation. Similarities and differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Potylitsyn, A.P.: Resonant diffraction radiation and Smith-Purcell effect. Phys. Lett. A 238, 112 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Ryazanov, M.I., Strikhanov, M.N., Tishchenko, A.A.: Diffraction radiation from an inhomogeneous dielectric film on the surface of a perfect conductor. JETP 126, 349 (2004)Google Scholar
  12. 12.
    Garsia de Abajo, F.J., Aizpurua, J.: Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B. 56, 15873 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Garsia de Abajo, F.J.: Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B 59, 3095 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Garsia de Abajo, F.J., Howie, A.: Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Gradshtein, I.S., Ryzhik, I.M.: Tables of Integrals, Series. Products Academic Press, New York, NY (1980)Google Scholar
  16. 16.
    Pitaevskiy, L.P.: Electric forces in a transparent media with dispersion. Sov. Phys. JETP 39, 1450 (1960)Google Scholar
  17. 17.
    Bollshov, L.A., Reshetin, V.P.: Dispersion phenomena at radiation passing through media with refraction index changing slowly in time. Sov. Zh. Eksp. Teor. Fiz. 77, 1911 (1979)ADSGoogle Scholar
  18. 18.
    Osipov, V.A., Ryazanov, M.I.: Emission of a charge moving uniformly parallel to the surface of a nonstationary medium. Laser Phys. 8, 1007 (1998)Google Scholar
  19. 19.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Addison-Wesley, Reading, MA (1984)Google Scholar
  20. 20.
    Weinstein, L.A.: Theory of Diffraction and the Factorization Method. The GoldenPress Boulder, Denver, CO (1969)Google Scholar
  21. 21.
    Mkrtchyan, A.R., Grigoryan, L.Sh., Didenko, A.N., Saharyan, A.A.: Radiation of a charged particle fluing over a surface acoustic wave. Acustica 75, 184 (1991)zbMATHGoogle Scholar
  22. 22.
    Mkrtchyan, A.R., Grigoryan, L.Sh., Didenko, A.N., Saharyan, A.A.: Radiation of a charged particle moving over raleigh acoustic wave. Sov. Zhurnal Tekhnicheskoi Fiziki 61, 21 (1991)ADSGoogle Scholar
  23. 23.
    Lindhard, J.: Influence of crystal lattice on motion of energetic charged particles. Mat.- Fys. Medd. Dan. Vid. Selsk. 34, 1 (1965)Google Scholar
  24. 24.
    Ryazanov, M.I., Safronov, A.N.: On quasi-transition radiation at reflecting of a charged particle from a crystal surface. Sov. Zh. Eksp. Teor. Fiz. 103, 3114 (1993)Google Scholar
  25. 25.
    Ryazanov, M.I., Safronov, A.N.: On quasi-transition radiation of surface waves. Sov. Zh. Eksp. Teor. Fiz. 104, 3512 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.National Research Nuclear University, MEPhIMoscowRussia
  3. 3.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations