Radiation from Relativistic Particles

Part of the Springer Tracts in Modern Physics book series (STMP, volume 239)


It is well known that emission is the process of the formation of transverse electromagnetic waves by moving charged particles. Let us consider the emission process occurring when a relativistic charged particle moves according to the law


Angular Distribution Transition Radiation Coherence Length Atomic Electron Cherenkov Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1987)Google Scholar
  2. 2.
    Ter-Mikaelyan, M.L.: High-Energy Electromagnetic Processes in Condensed Media. Wiley, New York, NY (1972)Google Scholar
  3. 3.
    Feinberg, E.L.: Nonelastic diffractive processes at high energies. Phys. Uspekhi 58, 193 (1956)Google Scholar
  4. 4.
    Landau, L.D., Pomeranchuk, I.Ya.: Electron-avalanche process at high energies. Dokl. Akad. Nauk. USSR 92, 735 (1953) (See English translation in the book: The Collected Papers of L.D. Landau. Pergamon Press, New York, NY (1965))Google Scholar
  5. 5.
    Landau, L.D., Pomeranchuk, I.Ya.: The Collected Papers of L.D. Landau. Pergamon Press, New York, NY (1965)Google Scholar
  6. 6.
    Migdal, A.B.: Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103, 1811 (1956)ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Anthony, P.L., Becker-Srendy, R., Bosted, P.E. et al.: Measurement of dielectric suppression of bremsstrahlung. Phys. Rev. Lett. 76, 3350 (1996)CrossRefGoogle Scholar
  8. 8.
    Akhiezer, A.I., Shul’ga, N.F.: Influence of multiple scattering on the radiation of relativistic particles in amorphous and crystalline media. Sov. Phys. Usp. 30, 197–219 (1987); Baier, V.M., Katkov, V.M.: Concept of formation length in radiation theory. Phys. Rep. 409, 261 (2005)Google Scholar
  9. 9.
    Bethe, H., Heitler, W.: On the stopping of fast particles and on creation of positive electrons. Proc. Roy. Soc. London A. 146, 83 (1934)ADSCrossRefGoogle Scholar
  10. 10.
    Wheeler, J., Lamb, W.: Influence of atomic electrons on radiation and pair production. Phys. Rev. 55, 858 (1939)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Astapenko, V.A., Buimistrov, V.M., Krotov, Yu.A.: Bremsstrahlung accompanied by atom excitation and ionization JETP 66 (3), 464 (1987)Google Scholar
  12. 12.
    Amusia, M., Buimistrov, V., Zon, B. et al.: Polarization Bremsstrahlung of Particles and Atoms. Plenum, New York, NY (1992)Google Scholar
  13. 13.
    Ginzburg, V.L., Frank, I.M.: On the transition radiation theory. Sov. Phys. JETP 16, 15 (1946)Google Scholar
  14. 14.
    Garibyan, G.M., Yang, C.: X-ray Transition Radiation. Yerevan, Armenia (1983)Google Scholar
  15. 15.
    Ginzburg, V.L., Tsytovich, V.N.: Transition Radiation and Transition Scattering. Higler, Bristol (1990)Google Scholar
  16. 16.
    Garibyan, G.M.: On the theory of transition radiation and ionization losses of particle energy. Sov. Phys. JETP 10, 372 (1960)MathSciNetGoogle Scholar
  17. 17.
    Barsukov, K.A.: Transition radiation in a wave guide. Sov. Phys. JETP 37, 787 (1960)MathSciNetGoogle Scholar
  18. 18.
    Yuan, L.C.L.: Energy dependence of X-ray transition radiation from ultrarelativistic charged particles. Phys. Rev. Lett. 31, 603 (1970)Google Scholar
  19. 19.
    Dolgoshein, B.: Transition radiation detectors. Nucl. Instrum. Methods Phys. Res. A 326, 434 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Smith, S.J., Purcell, E.M.: Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)ADSCrossRefGoogle Scholar
  21. 21.
    Barnes, C.W., Dedrick, K.G.: Radiation by an electron beam interacting with a diffraction grating. J. Appl. Phys. 37, 411 (1966)ADSCrossRefGoogle Scholar
  22. 22.
    Kazantsev, A.P., Surdutovich, G.I.: Radiation of a charged particle flying by metal screen. Sov. Phys. Dokl. 7, 990 (1963)ADSGoogle Scholar
  23. 23.
    Bolotovskiy, B.M., Voskresenskiy, G.V.: Radiation of charged string flying by metal screen. Sov. Phys. JETP 34, 11 (1964)Google Scholar
  24. 24.
    Glass, S.J., Mendlowitz, H.: Quantum theory of smith-purcell experiment. Phys. Rev. 174, 57 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    Bolotovskiy, B.M., Voskresenskiy, G.V.: Diffraction radiation. Sov. Phys. Usp. 94, 377 (1968)Google Scholar
  26. 26.
    Lalor, E.: Three-dimensional theory of smith-purcell effect. Phys. Rev. A. 8, 435 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    Potylitsyn, A.P.: Transition radiation and diffraction radiation. similarities and differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Ryazanov, M.I., Strikhanov, M.N., Tishchenko, A.A.: Diffraction radiation from an inhomogeneous dielectric film on the surface of a perfect conductor. JETP 126, 349 (2004)Google Scholar
  29. 29.
    Burov, A., Danilov, V.: Suppression of transverse bunch instabilities by asymmetries in the chamber geometry. Phys. Rev. Lett. 82, 2286 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Bane, K.L.F., Wilson, P.B., Weiland, T.: Wake fields and wake field acceleration in physics of high energy particle accelerators, AIP Conf. Proc., 127, 876 (1985).Google Scholar
  31. 31.
    Palmer, R.B.: A qualitative study of wake fields for very short bunches. Part. Accelerators 25, 97 (1990)Google Scholar
  32. 32.
    Chao, A.W.: Physics of Collective Beam Instabilities in High Energy Accelerators. Wiley, New York, NY (1993)Google Scholar
  33. 33.
    Heifets, S.A., Kheifets, S.A.: Coupling impedance in modern accelerators. Rev. Mod. Phys. 63, 631 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    Stupakov, G.V.: Geometrical Wake of a Smooth Taper. SLAC-PUB-95-7086 (1995)Google Scholar
  35. 35.
    Weinstein, L.A.: Theory of Diffraction and the Factorization Method. The Golden Press Boulder, Denver, CO (1969)Google Scholar
  36. 36.
    Kheifets, S.A., Palumbo, L.: Analytical calculation of the longitudinal impedance of a semi-infinite circular waveguide. European Organization for Nuclear Research, ReportCERN/LEP, note 580 (1987)Google Scholar
  37. 37.
    Gluckstern, R., Zotter, B.: Analysis of shielding charged particle beams by thin conductors. Phys. Rev. ST-AB 4, 024402 (2001)ADSGoogle Scholar
  38. 38.
    Al-khateeb, A.M., Boine-Frankenheim, O., Hasse, R.W., Hofmann, I.: Longitudinal impedance and shielding effectiveness of a resistive beam pipefor arbitrary energy and frequency. Phys. Rev. E 71(2):026501 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Schachter, L., Byer, R.L. Siemann, R.H.: Wake field in dielectric acceleration structures. Phys. Rev. E 68, 036502 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Bane, K.L.F., Stupakov, G.: Transition radiation wake-fields for a beam passing through a metallic foil. Phys. Rev. ST-AB 7, 064401 (2004)ADSGoogle Scholar
  41. 41.
    Schieber, D., Schachter, L.: Reaction forces on a relativistic point charge moving above a dielectric or a metallic half-space. Phys. Rev. E 57, 6008 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Xiang, D., Huang, W-H., Lin,Y-Z., Park, S-J., Ko, I.S.: Wake of a beam passing through a diffraction radiation target. Phys. Rev. ST Accel. Beams 11(2), 024001 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.National Research Nuclear University, MEPhIMoscowRussia
  3. 3.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations