Skip to main content

Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle

  • Chapter
  • First Online:
Dyke Swarms:Keys for Geodynamic Interpretation

Abstract

Diopsidites and rodingites are two specific kind of dyke cropping out in the mantle section of the Oman ophiolite. Diopsidites show a diopside monomineralic modal composition, associated in some exceptional cases with anorthite. Typical rodingites mineralogical assemblages include grossular, chlorite, tremolite, zoisite/clinozoisite, epidote, prehnite, diopside, magnetite and other accessory minerals in various proportions. Both are result from the alteration in Ca-rich environment of the mantle or pre-existing gabbroic dykes. In spite of this apparent common origin, significant divergences are observed between these two lithologies and their host, allowing us to think that they are two different kind of rock which have been generated by two different processes: rodingites are the result of the interaction between gabbroic dykes and serpentinisation-issued fluids, while diopsidites formed by genuine Ca-metasomatism of the mantle with an external source of calcium. A precise petrographical study of the diopsidites and rodingites, their characteristics and their interaction with their host show that these two lithologies are related to two different type of alteration in the mantle.

  1. 1.

    The first is a classical phenomenon of serpentinisation, which led to the transformation of a primary harzburgite to an assemblage of serpentine, brucite, and magnetite. Rodingite dykes are present in these serpentinised peridotites. They resulted from the interaction of the fluid responsible of the alteration with any mafic lithology included in the serpentinised zone.

  2. 2.

    The second type of alteration involves a Ca-rich fluid, it leads to abundant crystallisation of tremolite, replacing orthopyroxene and serpentine, and results in a nephrite with preserved porphyroclastic texture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach W, Klein F (2009) The petrology of seafloor rodingites: Insights from geochemical reaction path modelling. Lithos 112(1–2): 103–117. doi: 10.1016/j.lithos.2008.10.022

    Article  Google Scholar 

  • Barnes I, O’Neil JR, Trescases JJ (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42(1): 144–145. doi: 10.1016/0016–7037(78)90225–9

    Article  Google Scholar 

  • Bell JM, Clarke EdC, Marshall P (1911) The geology of the Dunn mountain subdivision, Nelson: NZ Geol. Surv Bull 12: 78

    Google Scholar 

  • Benoit M, Ceuleneer G, Polvé M (1999) The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402(6761): 514–518. doi: 10.1038/990073

    Article  Google Scholar 

  • Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134(1–3): 199–214. doi: 10.1016/S0009–2541(96)00087–3

    Article  Google Scholar 

  • Bilgrami SA, Howie RA (1960) Mineralogy and petrology of a rodingite dike, Hindubagh, Pakistan. Am Mineral 45(7–8): 791–801

    Google Scholar 

  • Bosch D, Jamais M, Boudier F, Nicolas A, Dautria JM, Agrinier P (2004) Deep and high-temperature hydrothermal circulation in the Oman ophiolite – Petrological and isotopic evidence. J Petrol 45(6): 1181–1208. doi: 10.1093/petrology/egh010

    Article  Google Scholar 

  • Capedri S, Garuti G, Rossi A (1978) Rodingites from Pindos. Constraints on the “rodingite” problem. Neues Jb Miner Abh 132(3): 242–263

    Google Scholar 

  • Ceuleneer G, Monnereau M, Amri I (1996) Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates. Nature 379(6561): 149–153. doi: 10.1038/379149a0

    Article  Google Scholar 

  • Ceuleneer G, Nicolas A, Boudier F (1988) Mantle flow patterns at an oceanic spreading centre: The Oman peridotites record. Tectonophysics 151(1–4): 1–26. doi: 10.1016/0040–1951(88)90238–7

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites: Ancient Oceanic Lithosphere? No. 12 in Minerals and rocks. Springer, Berlin. doi: 10.1016/0037–0738(79)90041–1

    Google Scholar 

  • Coleman RG (1981) Tectonic setting for Ophiolite Obduction in Oman. J Geophys Res 86(B4): 2497–2508. doi: 10.1029/JB086iB04p02497

    Article  Google Scholar 

  • Combe JP, Launeau P, Pinet P, Despan D, Harris E, Ceuleneer G, Sotin C (2006) Mapping of an ophiolite complex by high-resolution visible-infrared spectrometry. Geochem Geophys Geosyst. doi: 10.1029/2005GC001214

    Google Scholar 

  • Coogan LA, Thompson GM, MacLeod CJ (2002) A textural and geochemical investigation of high level gabbros from the Oman ophiolite: Implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63(1–2): 67–82. doi: 10.1016/S0024–4937(02)00114–7

    Article  Google Scholar 

  • Dubińska E (1995) Rodingites of the eastern part of the Jordanow-Gogolow serpentine massif, Lower Silesia, Poland. Can Mineral 33(3): 585–608

    Google Scholar 

  • Dubińska E (1997) Rodingites and amphibolites from the serpentinites surrounding Sowie Góry block (Lower Silesia, Poland): Record of supra-subduction zone magmatism and serpentinization. Neues Jahrb Mineral Abh 171(3): 239–279

    Google Scholar 

  • El-Shazly AEDK, Al-Belushi M (2004) Petrology and Chemistry of Metasomatic Blocks from Bawshir, Northeastern Oman. In Ernst WG (ed) Serpentine and Serpentinites: Mineralogy, Petrology, Geochemistry, Ecology, Geophysics, and Tectonics, vol 8. Bellwether Publcation, Geological Soceity of America, Columbia, MD: 388–422. doi: 10.2747/0020–6814.46.10.904 International Book Series

    Google Scholar 

  • Frost R (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central Cascades, Washington. J Petrol 16(2): 272–313. doi: 10.1093/petrology/16.2.237

    Article  Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7): 1351–1368. doi: 10.1093/petrology/egm021

    Article  Google Scholar 

  • Frost BR, Beard JS, McCaig A, Condliffe E (2009) The Formation of Micro-Rodingites from IODP Hole U1309D: Key to understanding the process of Serpentinization. J Petrol 49(9): 1579–1588. doi: 10.1093/petrology/egn038

    Article  Google Scholar 

  • Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contrib Mineral Petrol 49(3): 233–257. doi: 10.1007/BF00376590

    Article  Google Scholar 

  • Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 30(10): 899–902. doi: 10.1130/0091–7613(2002)03

    Article  Google Scholar 

  • Juteau T, Manac’h G, Moreau O, Lécuyer C, Ramboz C (2000) The high temperature reaction zone of the Oman ophiolite: New field data, microthermometry of fluid inclusions, PIXE analyses and oxygen isotopic ratios. Mar Geophys Res 21(3–4): 351–385. doi: 10.1023/A:1026798811446

    Article  Google Scholar 

  • Kawahata H, Nohara M, Ishizuka H, Hasebe S, Chiba H (2001) Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J Geophys Res 106(B6): 11083–11099. doi: 10.1029/2000JB900456

    Article  Google Scholar 

  • Kobayashi S, Shoji T (1988) Metasomatic process in the formation of rodingite in Boso Peninsula, Chiba, Japan. J Mineral Petrol Econ Geol 83(12): 514–526

    Article  Google Scholar 

  • Li XP, Zhang LF, Wang ZL (2007) Petrology of rodingite derived from eclogite in western Tianshan, China. J Metamorph Geol 25(3): 363–382. doi: 10.1111/j.1525–1314.2007.00700.x

    Article  Google Scholar 

  • MacLeod CJ, Yaouancq G (2000) A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges. Earth Planet Sci Lett 176(3–4): 357–373. doi: 10.1016/S0012-821X(00)00020–0

    Article  Google Scholar 

  • Manning CE, MacLeod CJ, Weston PE (2000) Lower-crustal cracking front at fast-spreading ridges: Evidence from the East Pacific Rise and the Oman Ophiolite. In Dilek YR, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, Special Publication, vol 349 Geological Society of America, Boulder, CO: 261–272, doi: 10.1130/0–8137–2349–3.261

    Chapter  Google Scholar 

  • Mittwede SK, Schandl ES (1992) Rodingites from the southern Appalachian Piedmont, South Carolina, USA. Euro J Mineral 4(1): 7–16

    Google Scholar 

  • Monnier C, Girardeau J, Le Mée L, Polvé M (2006) Along-ridge petrological segmentation of the mantle in the Oman ophiolite. Geochem Geophys Geosyst. doi: 10.1029/2006GC001320

    Google Scholar 

  • Muraoka H (1985) Serpentinization reaction responsible for rodingite formation of the Ashidachi ultramafic complex, Southwest Japan. J Jpn Assoc Mineral Petrol Econ Geol 80(10): 413–428

    Article  Google Scholar 

  • Nasir S, Al Sayigh AR, Al Harthy A, Al Khirbash S, Al Jaaidi O, Musllam A, Al Mishwat A, Al Bu’saidi S (2007) Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman. Chem Erde-Geochem 25(3): 213–228. doi: 10.1016/j.chemer.2005.01.003

    Article  Google Scholar 

  • Neal CR, Stanger G (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. Mineral Mag 48(347): 237–241

    Article  Google Scholar 

  • Nehlig P (1994) Fracture and permeability analysis in magma-hydrothermal transition zones in the Samail Ophiolite (Oman). J Geophys Res 99(B1): 589–601. doi: 10.1029/93JB02569

    Article  Google Scholar 

  • Nehlig P, Juteau T, Bendel V, Cotten J (1994) The root zones of oceanic hydrothermal systems: Constraints from the Samail Ophiolite (Oman). J Geophys Res 99(B3): 4703–4713. doi: 10.1029/93JB02663

    Article  Google Scholar 

  • Nicolas A, Mainprice D, Boudier F (2003) High-temperature seawater circulation throughout crust of oceanic ridges: A model derived from the Oman ophiolites. J Geophys Res 108(B8): 2371. doi: 10.1029/2002JB002094

    Article  Google Scholar 

  • Pearce JA, Alabaster T, Shelton AW, Searle MP (1981) The Oman ophiolite as a cretaceous arc-basin complex: evidence and implications. Philos Trans R Soc A 300 (1454): Extensional Tectonics Associated with Convergent Plate Boundaries

    Google Scholar 

  • Pomonis P, Tsikouras B, Karipi S, Hatzipanagiotou K (2008) Rodingite formation in ultramafic rocks from the Koziakas ophiolite, western Thessaly, Greece: Conditions of metasomatic alteration, geochemical exchanges and T-X(CO) evolutionary path. Can Mineral 46(3): 569–581. doi: 10.3749/canmin.46.3.569

    Article  Google Scholar 

  • Python M, Ceuleneer G (2003) Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem Geophys Geosyst. doi: 10.1029/2002GC000354

    Google Scholar 

  • Python M, Ceuleneer G, Arai S (2008) Chromian spinels in mafic – ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos 106(1–2): 137–154. doi: 10.1016/j.lithos.2008.07.001

    Article  Google Scholar 

  • Python M, Ceuleneer G, Ishida Y, Barrat JA, Arai S (2007) Oman diopsidites: A new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet Sci Lett 255(3–4): 289–305. doi: 10.1016/j.epsl.2006.12.030

    Article  Google Scholar 

  • Schandl ES, O’Hanley DS, Wicks FJ (1989) Rodingites in serpentinized ultramafic rocks of the Abitibi greenstone belt, Ontario. Can Mineral 27(4): 579–591

    Google Scholar 

  • Stanger G (1985) Silicified serpentinite in the Semail nappe of Oman. Lithos 18: 13–22. doi: 10.1016/0024–4937(85)90003–9

    Article  Google Scholar 

  • Sugimoto T, Shibata T, Yoshikawa M (2007) Procedure of making a fused glass bead for whole rock major elements analyses by X-ray fluorescence spectrometer RIGAKU SYSTEM3270. Annual report of Institute for Geothermal Sciences, Graduate School of Science, Kyoto University FY2006: 44–47

    Google Scholar 

  • Trommsdorff V, Connolly JAD (1990) Constraints on phase diagram topology for the system CaO-MgO-SiO-CO-HO. Contrib Mineral Petrol 104(1): 1–7. doi: 10.1007/BF00310641

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272: 423–437

    Article  Google Scholar 

  • Yoshitake N, Arai S, Ishida Y, Tamura A (2009) Geochemical characteristics of chloritization of mafic crust from the northern Oman ophiolite: Implications for estimating the chemical budget of hydrothermal alteration of the oceanic lithosphere. J Mineral Petrol Sci 104: 156–163. doi: 10.2465/jmps.081022b

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Ministry of Commerce and Industry in Oman for help at any aspect of the field work; to Satoko Ishimaru and Akihiro Tamura for assistance and advice at the microprobe of Kanazawa University. We thank Andrew McCraig whose comments greatly contributed to improve this manuscript. This work was partially supported by Grant-in-Aid for Creative Scientific Research (19GS0211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Python .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Python, M., Yoshikawa, M., Shibata, T., Arai, S. (2011). Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle. In: Dyke Swarms:Keys for Geodynamic Interpretation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12496-9_23

Download citation

Publish with us

Policies and ethics