Skip to main content

Biochemistry and Enzymology of Poly-Epsilon-l-Lysine Biosynthesis

  • Chapter
  • First Online:
Amino-Acid Homopolymers Occurring in Nature

Part of the book series: Microbiology Monographs ((MICROMONO,volume 15))

Abstract

Streptomyces albulus NBRC14147 (previously named IFO14147) is known to produce the amino-acid homopolymer antibiotic, poly-ε-l-lysine (ε-poly-l-lysine, ε-PL), consisting of 25–35 l-lysine residues with a linkage between the α-carboxyl group and the ε-amino group. Because ε-PL exhibits antimicrobial activity against a wide spectrum of microorganisms, including Gram-positive and Gram-negative bacteria, as well as antiphage activity, and because it is both safe and biodegradable, ε-PL has been introduced as a food preservative in Japan, South Korea, the United States, and other countries. This chapter covers the current knowledge and most recent advances in regard to the genetic system for S. albulus NBRC14147 and ε-PL synthetase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergendahl V, Linne U, Marahiel MA (2002) Mutational analysis of the C-domain in nonribosomal peptide synthesis. Eur J Biochem 269:620–629

    Article  PubMed  CAS  Google Scholar 

  • Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado Y, Fernandez M, Recio E, Aparicio JF, Martin JF (2004) Characterization of the ask-asd operon in aminoethoxyvinylglycine-producing Streptomyces sp. NRRL 5331. Appl Microbiol Biotechnol 64:228–236

    Article  PubMed  CAS  Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Nicchu I, Hoshino Y, Kawai T, Nakamori S, Takagi H (2005) Development of gene delivery systems for the ε-poly-l-lysine producer, Streptomyces albulus. J Biosci Bioeng 99:636–641

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H (2006) Biological function of the pld gene product that degrades ε-poly-l-lysine in Streptomyces albulus. Appl Microbiol Biotechnol 72:173–181

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H (2007) epsilon-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76:873–82

    Article  PubMed  CAS  Google Scholar 

  • Hernando-Rico V, Martin JF, Santamarta I, Liras P (2001) Structure of the ask-asd operon and formation of aspartokinase subunits in the cephamycin producer ‘Amycolatopsis lactamdurans’. Microbiology 147:1547–1555

    PubMed  CAS  Google Scholar 

  • Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci USA 101:15052–15057

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa T, Boon Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock MJ, Hodgson B, Linforth JL (1980) Regulation of lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. J Bacteriol 142:424–432

    PubMed  CAS  Google Scholar 

  • Kawai T, Kubota T, Hiraki J, Izumi Y (2003) Biosynthesis of ε-poly-l-lysine in a cell-free system of Streptomyces albulus. Biochem Biophys Res Commun 311:635–640

    Article  PubMed  CAS  Google Scholar 

  • Keating TA, Marshall CG, Walsh CT, Keating AE (2002) The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9:522–526

    PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Kobashi N, Nishiyama M, Yamane H (2001) Characterization of aspartate kinase III of Bacillus subtilis. Biosci Biotechnol Biochem 65:1391–1394

    Article  PubMed  CAS  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673

    Article  PubMed  CAS  Google Scholar 

  • Matsushima P, Broughton MC, Turner JR, Baltz RH (1994) Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146:39–45

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585

    PubMed  CAS  Google Scholar 

  • Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490–504

    Article  PubMed  CAS  Google Scholar 

  • Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in l-threonine production. Biosci Biotechnol Biochem 65:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Oppermann Sanio FB, Steinbuchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    Article  PubMed  Google Scholar 

  • Paranthaman S, Dharmalingam K (2003) Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl Environ Microbiol 69:84–91

    Article  PubMed  CAS  Google Scholar 

  • Saimura M, Takehara M, Mizukami S, Kataoka K, Hirohara H (2008) Biosynthesis of nearly monodispersed poly(epsilon-l-lysine) in Streptomyces species. Biotechnol Lett 30:377–385

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41:1807–1809

    Article  CAS  Google Scholar 

  • Shima S, Sakai H (1981a) Poly-l-lysine produced by Streptomyces. II. Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502

    Article  CAS  Google Scholar 

  • Shima S, Sakai H (1981b) Poly-l-lysine produced by Streptomyces. III. Chemical studies. Agric Biol Chem 45:2503–2508

    Article  CAS  Google Scholar 

  • Shima S, Matsuoka H, Sakai H (1982) Inactivation of bacteriophages by ε-poly-l-lysine produced by Streptomyces. Agric Biol Chem 46:1917–1919

    Article  CAS  Google Scholar 

  • Shima S, Oshima S, Sakai H (1983) Biosynthesis of ε-poly-l-lysine by washed mycelium of Streptomyces albulus No. 346. Nippon Nogeikagaku Kaishi 57:221–226

    Article  CAS  Google Scholar 

  • Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ε-poly-l-lysine. J Antibiot (Tokyo) 37:1449–1455

    Article  CAS  Google Scholar 

  • Stinchi S, Azimonti S, Donadio S, Sosio M (2003) A gene transfer system for the glycopeptide producer Nonomuraea sp. ATCC39727. FEMS Microbiol Lett 225:53–57

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Hoshino Y, Nakamori S, Inouye S (2000) Isolation and sequence analysis of plasmid pNO33 in the ε-poly-l-lysine-producing actinomycete Streptomyces albulus IFO14147. J Biosci Bioeng 89:94–96

    Article  PubMed  CAS  Google Scholar 

  • Theze J, Margarita D, Cohen GN, Borne F, Patte JC (1974) Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol 117:133–143

    PubMed  CAS  Google Scholar 

  • Tunca S, Yilmaz EI, Piret J, Liras P, Ozcengiz G (2004) Cloning, characterization and heterologous expression of the aspartokinase and aspartate semialdehyde dehydrogenase genes of cephamycin C-producer Streptomyces clavuligerus. Res Microbiol 155:525–534

    Article  PubMed  CAS  Google Scholar 

  • Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162:47–52

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2003) Antibiotics: Action, Origins, Resistance. ASM Press, Washington DC

    Google Scholar 

  • Yamanaka K, Maruyama C, Takagi H, Hamano Y (2008) Epsilon-poly-l-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol 4:766–772

    Article  PubMed  CAS  Google Scholar 

  • Zhang JJ, Paulus H (1990) Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. J Bacteriol 172:4690–4693

    PubMed  CAS  Google Scholar 

  • Zhang JJ, Hu FM, Chen NY, Paulus H (1990) Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J Bacteriol 172:701–708

    PubMed  CAS  Google Scholar 

  • Zhang W, Jiang W, Zhao G, Yang Y, Chiao J (1999) Sequence analysis and expression of the aspartokinase and aspartate semialdehyde dehydrogenase operon from rifamycin SV-producing Amycolatopsis mediterranei. Gene 237:413–419

    Article  PubMed  CAS  Google Scholar 

  • Zhang WW, Jiang WH, Zhao GP, Yang YL, Chiao JS (2000) Expression in Escherichia coli, purification and kinetic analysis of the aspartokinase and aspartate semialdehyde dehydrogenase from the rifamycin SV-producing Amycolatopsis mediterranei U32. Appl Microbiol Biotechnol 54:52–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimitsu Hamano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamano, Y. (2010). Biochemistry and Enzymology of Poly-Epsilon-l-Lysine Biosynthesis. In: Hamano, Y. (eds) Amino-Acid Homopolymers Occurring in Nature. Microbiology Monographs, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12453-2_2

Download citation

Publish with us

Policies and ethics