Skip to main content

Enantioselective Recognition in Solution: The Case of Countercurrent Chromatography

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

Countercurrent chromatography (CCC) is a preparative separation technique that works with a liquid stationary phase. Biphasic liquid systems are needed to perform a separation. Since a chiral selector is required to perform enantiomer separations, special requirements are imposed in CCC. The chiral selector (CS) must be located in the stationary phase since partitioning with the mobile phase would cause losses of the valuable chiral selector in the mobile phase. Sulfated cyclodextrins and proteins were used as polar CS located in the polar stationary phase (reversed phase mode). Apolar CSs such as N-dodecyl-l-proline 3,5-dimethylanilide or Whelk-O selectors, quinine and quinidine derivatives, cellulose or amylose apolar derivatives were used located in the apolar stationary phase (normal phase mode). The special CCC displacement method called pH-zone refining was found useful in the increase of the loading capacity for cellulose, quinine, quinidine, and proline-derived selectors. Dual and multidual mode uses of CCC could produce an increase in peak separation thereby broadening the applicability of moderately enantioselective CSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandava NB, Ito Y (eds) (1985) Countercurrent chromatography, theory and practice, chromatographic science series, vol 44. Marcel Dekker, New York

    Google Scholar 

  2. Conway WD (1990) Countercurrent chromatography, apparatus, theory and applications. VCH Publishers, New York

    Google Scholar 

  3. Foucault AP (ed) (1995) Centrifugal partition chromatography. Chromatographic science series, vol 68. Marcel Dekker, New York

    Google Scholar 

  4. Berthod A (ed) (2002) Countercurrent chromatography, the support free liquid stationary phase. Comprehensive analytical chemistry, vol 38. Elsevier Science, Amsterdam

    Google Scholar 

  5. Marston A, Hostettmann K (2006) Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A 1112:181–194

    Article  CAS  Google Scholar 

  6. Friesen JB, Pauli GF (2007) Rational development of solvent system families in counter-current chromatography. J Chromatogr A 1151:51–59

    Article  CAS  Google Scholar 

  7. Dubant S, Mathews B, Higginson P, Crook R, Snowden M, Mitchell J (2008) Practical solvent system selection for counter-current separation of pharmaceutical compounds. J Chromatogr A 1207:190–192

    Article  CAS  Google Scholar 

  8. Leitao GG, El-Adji SS, Lopes de Melo WA, Leitao SG, Brown L (2005) Separation of free and glycosylated flavonoids from Siparuna guianensis by gradient and isocratic CCC. J Liq Chromatogr Relat Technol 28:2041–2051

    Article  CAS  Google Scholar 

  9. Jin W, Tu P-F (2005) Preparative isolation and purification of trans-3,5,4’-trihydroxystilbene-4’-O-β-d-glucopyranoside and (+)-catechin from Rheum tanguticum Maxim. ex Balf. Using high-speed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase. J Chromatogr A 1092:241–245

    Article  CAS  Google Scholar 

  10. Ito Y, Ma Y (1996) pH-Zone-refining countercurrent chromatography. J Chromatogr A 753:1–36

    Article  CAS  Google Scholar 

  11. Yang F, Quan J, Zhang TY, Ito Y (1998) Multidimensional counter-current chromatographic system and its application. J Chromatogr A 803:298–301

    Article  CAS  Google Scholar 

  12. Berthod A, Maryutina T, Spivarov B, Shpigun O, Sutherland IA (2009) Countercurrent chromatography in analytical chemistry. Pure Appl Chem 81:355–387

    Article  CAS  Google Scholar 

  13. Agnely M, Thiébaut D (1997) Dual-mode high-speed counter-current chromatography: retention, resolution and examples. J Chromatogr A 790:17–30

    Article  CAS  Google Scholar 

  14. Delannay E, Toribio A, Boudesocque L, Nuzillard J-M, Zèches-Hanrot M, Dardennes E, Le Dour G, Sapi J, Renault J-H (2006) Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications. J Chromatogr A 1127:45–51

    Article  CAS  Google Scholar 

  15. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2003) Elution-extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Anal Chem 75:5886–5894

    Article  CAS  Google Scholar 

  16. Lee YW, Cook CE, Ito Y (1988) Dual countercurrent chromatography. J Liq Chromatogr Relat Technol 11:37–53

    Article  CAS  Google Scholar 

  17. Berthod A, Hassoun M (2006) Using the liquid nature of the stationary phase in countercurrent chromatography IV. The cocurrent CCC method. J Chromatogr A 1116:143–148

    Article  CAS  Google Scholar 

  18. Sutherland IA, Audo G, Bourton E, Couillard F, Fisher D, Garrard I, Hewitson P, Intes O (2008) Rapid linear scale-up of a protein separation by centrifugal partition chromatography. J Chromatogr A 1190:57–62

    Article  CAS  Google Scholar 

  19. Sutherland IA, Hewitson P, Ignatova S (2009) Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J Chromatogr A 1216:8787–8792

    Article  CAS  Google Scholar 

  20. Foucault AP (2001) Enantioseparations in counter-current chromatography and centrifugal partition chromatography. J Chromatogr A 906:365–378

    Article  CAS  Google Scholar 

  21. Pérez E, Minguillón C (2007) Countercurrent chromatography in the separation of enantiomers. In: Subramanian G (ed) Chiral separation techniques. A practical approach, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  22. Kessler LC, Seidel-Morgenstern A (2006) Theoretical study of multicomponent continuous countercurrent chromatography based on connected 4-zone units. J Chromatogr A 1126:323–337

    Article  CAS  Google Scholar 

  23. Lim BG, Ching CB (1996) Preliminary design of a simulated counter-current chromatographic system for the separation of praziquantel enantiomers. J Chromatogr A 734:247–258

    Article  CAS  Google Scholar 

  24. Ito Y, Weinstein MA, Aoki I, Harada R, Kimura E, Nunogaki K (1966) The coil planet centrifuge. Nature 212:985–987

    Article  CAS  Google Scholar 

  25. Ito Y (2002) Foreword. In: Berthod A (ed) Countercurrent chromatography: the support-free liquid stationary phase. Comprehensive analytical chemistry, vol 38. Elsevier, Amsterdam, pp xix–xx

    Google Scholar 

  26. Ito Y (1992) Countercurrent chromatography. In: Heftmann E (ed) Chromatography, 5th edn. J Chromatogr Lib, vol 51A, Elsevier, Amsterdam

    Google Scholar 

  27. Maier NM, Lindner W (2006) Stereoselective chromatographic methods for drug analysis. In: Francotte E, Lindner W (eds) Chirality in drug research. Methods and principles in medicinal chemistry seriers, vol 33. Wiley-VCH, Weinheim

    Google Scholar 

  28. Ma Y, Ito Y (1995) Chiral separation by high speed countercurrent chromatography. Anal Chem 67:3069–3074

    Article  CAS  Google Scholar 

  29. Lämmerhofer M, Lindner W (2000) Recent developments in liquid chromatographic enantioseparation. In: Valkó K (ed) Separation methods in drug synthesis and purification, handbook of analytical separations, vol 1. Elsevier, Amsterdam

    Google Scholar 

  30. Pfeiffer CC (1956) Optical isomerism and pharmacological action, a generalization. Science 124:29–30

    Article  CAS  Google Scholar 

  31. Lämmerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors. I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741:33–48

    Article  Google Scholar 

  32. Berthod A, Billardello B (2000) Test to evaluate countercurrent chromatographs liquid stationary phase retention and chromatographic resolution. J Chromatogr A 902:323–335

    Article  CAS  Google Scholar 

  33. Ignatova SN, Sutherland IA (2003) A fast, effective method of characterizing new phase systems in CCC. J Liq Chromatogr Relat Technol 26:1551–1564

    Article  CAS  Google Scholar 

  34. Foucault AP, Bousquet O, Le Goffic F (1992) Importance of the parameters Vm/Vc in countercurrent chromatography: tentative comparison between instrument designs. J Liq Chromatogr 15:2691–2706

    Article  CAS  Google Scholar 

  35. Maryutina TA, Fedotov PS, Spivakov BY (1999) Application of countercurrent chromatography in inorganic analysis. In: Menet JM, Thiebaut D (eds) Countercurrent chromatography, chromatographic science series, vol 68. Marcel Dekker, New York

    Google Scholar 

  36. Maryutina TA, Ignatova SN, Spivakov BY, Sutherland IA (2003) The efficiency of substance separation in countercurrent liquid chromatography. J Anal Chem 58:762–767

    Article  CAS  Google Scholar 

  37. Kim E, Koo YM, Chung DS (2004) Chiral counter-current chromatography of gemifloxacin guided by capillary electrophoresis using (+)-(18-crown-6)-tetracarboxylic acid as a chiral selector. J Chromatogr A 1045:119–124

    Article  CAS  Google Scholar 

  38. Pérez E, Santos MJ, Minguillón C (2006) Application of cellulose and amylose arylcarbamates as chiral selectors in counter-current chromatography. J Chromatogr A 1107:165–174

    Article  Google Scholar 

  39. Oya S, Snyder JK (1986) Chiral resolution of a carboxylic acid using droplet counter-current chromatography. J Chromatogr 370:333–338

    Article  CAS  Google Scholar 

  40. Bergholdt BA, Lehmann SV (1998) High-speed separation of ormeloxifene enantiomers using sulfated β-cyclodextrin in capillary electrophoresis. Chirality 10:699–704

    Article  CAS  Google Scholar 

  41. Breinholt J, Lehmann SV, Varming AM (1999) Enantiomer separation of 7-des-methyl-ormeloxifene using sulfated β-cyclodextrin in countercurrent chromatography. Chirality 11:768–771

    Article  CAS  Google Scholar 

  42. Armstrong DW, Rundlett KL, Chen J-R (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6:496–509

    Article  CAS  Google Scholar 

  43. Armstrong DW, Zhou Y (1994) Use of a macrocyclic antibiotic as the chiral selector for enantiomeric separations by TLC. J Liq Chromatogr 17:1695–1707

    Article  CAS  Google Scholar 

  44. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  45. Duret P, Foucault A, Margraff R (2000) Vancomycin as a chiral selector in centrifugal partition chromatography. J Liq Chromatogr Relat Technol 23:295–312

    Article  CAS  Google Scholar 

  46. Stewart KK, Doherty RF (1973) Resolution of DL-triptophan by affinity chromatography on bovine-serum-albumin-agarose columns. Proc Natl Acad Sci U S A 70:2850–2852

    Article  CAS  Google Scholar 

  47. Allenmark S, Bomgren B, Borén H (1983) Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases III. Optical resolution of a series of N-aroyl D,l-amino acids by high performance liquid chromatography on bovine serum albumin covalently bonded to silica. J Chromatogr 264:63–68

    Article  CAS  Google Scholar 

  48. Ekberg B, Sellergren B, Albertsson PA (1985) Direct chiral resolution in an aqueous two-phase system using the counter-current distribution principle. J Chromatogr 333:211–214

    Article  CAS  Google Scholar 

  49. Arai T, Kuroda H (1991) Distribution behaviour of some drug enantiomers in an aqueous two-phase system using counter current extraction with protein. Chromatographia 32:56–60

    Article  CAS  Google Scholar 

  50. Shinomiya K, Kabasawa K, Ito Y (1998) Enantiomeric separation of commercial D,l-kynurenine with an aqueous two-phase solvent system by cross-axis coil planet centrifuge. J Liq Chromatogr 21:135–141

    CAS  Google Scholar 

  51. Pirkle WH, Welch CJ (1992) Effect of superfluous remote polar functionality on chiral recognition. J Chromatogr A 589:45–51

    Article  CAS  Google Scholar 

  52. Perrin C, Matthijs N, Mangelings D, Granier-Loyaux C, Maftouh M, Massarta DL, Heyden YV (2002) Screening approach for chiral separation of pharmaceuticals Part II. Reversed-phase liquid chromatography. J Chromatogr A 966:119–134

    Article  CAS  Google Scholar 

  53. Delgado B, Pérez E, Santano MC, Minguillón C (2005) Enantiomer separation by counter-current chromatography. Optimisation and drawbacks in the use of l-proline derivatives as chiral selectors. J Chromatogr A 1092:36–42

    Article  CAS  Google Scholar 

  54. Domon B, Hostettmann K, Kovacevic K, Prelog V (1982) Separation of the enantiomers of (±)-norephedrine by rotation locular counter-current chromatography. J Chromatogr 250:149–151

    Article  CAS  Google Scholar 

  55. Prelog V, Stojanac Z, Kovacevic K (1982) Separation of enantiomers by partition between liquid phases. Helv Chim Acta 65:377–384

    Article  CAS  Google Scholar 

  56. Takeuchi T, Horikawa R, Tanimura T (1984) Complete resolution of DL-isoleucine by droplet counter-current chromatography. J Chromatogr 284:285–288

    Article  CAS  Google Scholar 

  57. Pirkle WH, Murray PG (1993) Chiral stationary phase design. Use of intercalative effects to enhance enantioselectivity. J Chromatogr 641:11–19

    Article  CAS  Google Scholar 

  58. Oliveros L, Franco P, Minguillón C, Camacho-Frias E, Foucault AP, Le Goffic F (1994) Donor-acceptor chiral centrifugal partition chromatography: complete resolution of two pairs of amino-acid derivatives with a chiral II donor selector. J Liq Chromatogr 17:2301–2318

    Article  CAS  Google Scholar 

  59. Ma Y, Ito Y, Foucault A (1995) Resolution of gram quantities of racemates by high-speed counter-current chromatography. J Chromatogr A 704:75–81

    Article  CAS  Google Scholar 

  60. Ma Y, Ito Y, Berthod A (1999) A chromatographic method for measuring kf of enantiomer-chiral selector complexes. J Liq Chromatogr Relat Technol 22:2945–2955

    Article  CAS  Google Scholar 

  61. Lämmerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741:33–48

    Article  Google Scholar 

  62. Kellner KH, Blasch A, Chmiel H, Lämmerhofer M, Lindner W (1997) Enantioseparation of N-protected α-amino acid derivatives by liquid-liquid extraction technique employing stereoselective ion-pair formation with a carbamoylated quinine derivative. Chirality 9:268–273

    Article  CAS  Google Scholar 

  63. Zarbl E, Lämmerhofer M, Franco P, Petracs M, Lindner W (2001) Development of stereoselective nonaqueous capillary electrophoresis system for the resolution of cationic and anphoteric analytes. Electrophoresis 22:3297–3307

    Article  CAS  Google Scholar 

  64. Franco P, Blanc J, Oberleitner WR, Maier NM, Lindner W, Minguillón C (2002) Enantiomer separation by countercurrent chromatography using cinchona alkaloid derivatives as chiral selectors. Anal Chem 74:4175–4183

    Article  CAS  Google Scholar 

  65. Gavioli E, Maier NM, Minguillón C, Lindner W (2004) Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Anal Chem 76:5837–5848

    Article  CAS  Google Scholar 

  66. Okamoto Y, Kaida Y (1994) Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J Chromatogr A 666:403–419

    Article  CAS  Google Scholar 

  67. Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154

    Article  CAS  Google Scholar 

  68. Yashima E, Yamamoto C, Okamoto Y (1996) NMR studies of chiral discrimination relevant to the liquid chromatographic enantioseparation by a cellulose phenylcarbamate derivative. J Am Chem Soc 118:4036–4048

    Article  CAS  Google Scholar 

  69. Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  70. Terbojevich M, Cosani A, Focher B, Gastaldi G, Wu W, Marsano E, Conio G (1999) Solution properties and mesophase formation of 4-phenylbenzoylcellulose. Cellulose 6:71–87

    Article  CAS  Google Scholar 

  71. Pérez E, Minguillón C (2006) Optimisation of the derivatization in cellulose-type chiral selectors for enantioseparation by centrifugal partition chromatography. J Sep Sci 29:1379–1389

    Article  Google Scholar 

  72. Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57:3854–3860

    Article  CAS  Google Scholar 

  73. Andersson S (2006) Preparative chiral chromatography – a powerful and efficient tool in drug discovery. In: Subramanian G (ed) Chiral separation techniques. A practical approach, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  74. Francotte E (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    Article  CAS  Google Scholar 

  75. Rubio N, Minguillón C (2010) Preparative enantioseparation of (±)-N-(3,4-cis-3-decyl-1,2,3,4-tetrahydrophenanthren-4-yl)-3,5-dinitrobenzamide by centrifugal partition chromatography. J Chromatogr A 1217:1183–1190

    Google Scholar 

  76. Rubio N, Minguillón C, in preparation

    Google Scholar 

  77. Rubio N, Ignatova S, Sutherland I, Minguillón C (2009) Multiple dual-mode counter-current chromatography applied to chiral separations. J Chromatogr A 1216:8505–8511

    Article  CAS  Google Scholar 

  78. Kagan M, Chlenov M, Kraml CM (2004) Normal-phase high-performance liquid chromatographic separations using ethoxynonafluorobutane as hexane alternative II. Liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry applications with methanol gradients. J Chromatogr A 1033:321–331

    Article  CAS  Google Scholar 

  79. Ding J, Desai M, Armstrong DW (2005) Evaluation of ethoxynonafluorobutane as a safe and environmentally friendly solvent for chiral normal-phase LC-atmospheric pressure chemical ionization/electrospray ionization-mass spectrometry. J Chromatogr A 1076:34–43

    Article  CAS  Google Scholar 

  80. Pérez AM, Minguillón C (2010) New biphasic solvent systems containing a fluorinated component and its use in countercurrent chromatography for the separation of enantiomers. J Chromatogr A 1217:1094–1100

    Article  Google Scholar 

  81. Weisz A, Scher AL, Shinomiya K, Fales HM, Ito Y (1994) A new preparative-scale purification technique: pH-zone-refining countercurrent chromatography. J Am Chem Soc 116:704–708

    Article  CAS  Google Scholar 

  82. Couillard F, Foucault A, Durand D (2005) Process and device for separation of the components to a liquid load by centrifugal liquid-liquid chromatography. Patent WO2005011835

    Google Scholar 

  83. Van den Heuvel R, Mathews B, Dubant S, Sutherland I (2009) Continuous counter-current extraction on an industrial sample using dual-flow counter-current chromatography. J Chromatogr A 1216:4147–4153

    Article  Google Scholar 

  84. Berthod A, Carda-Broch S (2004) Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in countercurrent chromatography. Anal Bioanal Chem 380:168–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministerio de Educación y Ciencia of Spain and from the European Regional Development Fund (ERDF) (project number CTQ2006-03378/PPQ) is gratefully acknowledged. N. Rubio thanks the Ministerio de Educación y Ciencia for a doctoral fellowship. The authors thank A. M. Pérez and Dr. M. D. Llongueras for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Minguillón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubio, N., Minguillón, C. (2010). Enantioselective Recognition in Solution: The Case of Countercurrent Chromatography. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_9

Download citation

Publish with us

Policies and ethics