Skip to main content

Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

The macrocyclic glycopeptide chiral selectors are natural molecules produced by bacterial fermentation. Purified and bonded to silica particles, they make very useful chiral stationary phases (CSP) with a broad spectrum of applicability in enantiomeric separation. The macrocyclic glycopeptide CSPs are multimodal, the same column being able to work in normal phase mode with apolar mobile phase, in reversed-phase mode, or in polar ionic mode with 100% alcoholic mobile phase of adjusted pH. The role of the carbohydrate units is described as well as the critical charge–charge docking interaction responsible for the amino acid enantiomer recognition. The complimentary phenomenon is also exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong DW (1995, 1999, 2003) Macrocyclic antibiotics as separation agents. European Patent EP0748247, 24 Aug 1995, US Patents 5964996 and 6669842, 12 Oct 1999 and 30 Dec 2003

    Google Scholar 

  2. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Macrocyclic antibiotic as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  3. http://www.sigmaaldrich.com/analytical-chromatography/hplc/columns/chiral/chirobiotic.html consulted on 13 Oct 2009

  4. Del Rio A, Piras P, Roussel C (2005) Data mining and enantiophore studies on chiral stationary phases used in HPLC separations. Chirality 17:S74–S83

    Article  CAS  Google Scholar 

  5. Felix G, Berthod A (2007) Commercial chiral stationary phases for the separations of clinical racemic drugs. Part I: From alimentary tract and metabolism to cardiovascular system. Sep Purif Rev 36:285–481

    Article  CAS  Google Scholar 

  6. Felix G, Berthod A (2008) Commercial chiral stationary phases for the separations of clinical racemic drugs. Part II: From dermatologicals to Sensory organs and various drugs. Sep Purif Rev 37:1–227

    Article  CAS  Google Scholar 

  7. Felix G, Berthod A, Piras P, Roussel C (2008) Commercial chiral stationary phases for the separations of clinical racemic drugs. Part III supercritical fluid chromatographic separations. Sep Purif Rev 37:229–301

    Article  CAS  Google Scholar 

  8. Staroverov SM, Kuznetsov MA, Nesterenko PN, Vasiarov GG, Katrukha GS, Fedorova GB (2006) New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J Chromatogr A 1108:263–267

    Article  CAS  Google Scholar 

  9. Ilisz I, Berkecz R, Peter A (2009) Retention mechanism of HPLC enantioseparations on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1216:1845–1860

    Article  CAS  Google Scholar 

  10. D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism. Adv Chromatogr 46:109–174

    Google Scholar 

  11. Berthod A, Liu Y, Bagwill C, Armstrong DW (1996) Facile liquid chromatography enantioseparations of native amino acids and peptides using a teicoplanin chiral stationary phase. J Chromatogr A 731:123–137

    Article  CAS  Google Scholar 

  12. Sztojkov-Ivanov A, Lazar L, Fulop F, Armstrong DW, Peter A (2006) Comparison of separation efficiency of macrocyclic glycopeptide-based chiral stationary phases for the LC enantioseparation of β-amino acids. Chromatographia 64:89–94

    Article  CAS  Google Scholar 

  13. Ilisz I, Berkecz R, Peter A (2006) HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: a review. J Sep Sci 29:1305–1321

    Article  CAS  Google Scholar 

  14. Astec Supelco (2004) Chirobiotic handbook, 5th edn. Supelco, Bellefonte, PA

    Google Scholar 

  15. Berthod A, Chen X, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Villani C, Carotti A (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based stationary phases. Anal Chem 72:1767–1780

    Article  CAS  Google Scholar 

  16. Ekborg-Ott KH, Liu Y, Armstrong DW (1998) Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic Ristocetin A chiral stationary phase. Chirality 10:434–483

    Article  CAS  Google Scholar 

  17. Mathews CK, Van Holde KE (1996) Biochemistry, 2nd edn. Benjamin Cummings Publ, Menlo Park, CA

    Google Scholar 

  18. Nair UB, Chang SC, Armstrong DW, Rawjee YY, Eggleston DS, McArdle JV (1996) Elucidation of vancomycin’s enantioselective binding site using its copper complex. Chirality 8:590–595

    Article  CAS  Google Scholar 

  19. Berthod A, Valleix A, Tizon V, Leonce E, Caussignac C, Armstrong DW (2001) Retention and selectivity of teicoplanin chiral stationary phases after copper complexation and isotopic exchange. Anal Chem 73:5499–5508

    Article  CAS  Google Scholar 

  20. Xiao TL, Rozhkov RV, Larock RC, Armstrong DW (2003) Separation of the enantiomers of substituted dihydrofurocoumarins by HPLC using macrocyclic glycopeptide chiral stationary phases. Anal Bioanal Chem 377:639–654

    Article  CAS  Google Scholar 

  21. Kaplan J, Korty BD, Axelsen PH, Loll PJ (2001) The role of sugar residues in molecular recognition by vancomycin. J Med Chem 44:1837–1840

    Article  CAS  Google Scholar 

  22. Kustenov MA, Nesterenko PN, Vasiyarov GG, Staroverov SM (2006) Sorbents with immobilized glycopeptide antibiotics for separating optical isomers by HPLC. Appl Biochem Microbiol 42:536–543

    Article  Google Scholar 

  23. Parris NA (1978) Non-aqueous reversed-phase chromatography of glycerides using infrared detection. J Chromatogr 149:615–624

    Article  CAS  Google Scholar 

  24. Parris NA (1983) Isocratic non-aqueous reversed phase liquid chromatography of carotenoids. Anal Chem 55:270–275

    Article  Google Scholar 

  25. Tchapla A, Heron S, Lesellier E (1993) General view of molecular interaction mechanisms in RPLC. J Chromatogr A 656:81–112

    Article  CAS  Google Scholar 

  26. Thevenon-Emeric G, Tchapla A, Martin M (1991) Role of π–π interactions in RPLC. J Chromatogr A 550:267–283

    Article  CAS  Google Scholar 

  27. Bosch E, Bou P, Allermann H, Roses M (1996) Retention of ionisable compounds on HPLC. pH Scale in methanol-water and the pK and pH values of buffers. Anal Chem 68:3651–5657

    Article  CAS  Google Scholar 

  28. Subirats X, Roses M, Bosch E (2007) On the effect of organic solvent composition on the pH of buffered HPLC mobile phases and the pKa of analytes. Sep Pur Rev 36:231–255

    Article  CAS  Google Scholar 

  29. Beesley TE, Lee JT (2009) Method development strategy and applications update for Chirobiotic® chiral stationay phases. J Liq Chromatogr Relat Technol 32:1733–1767

    Article  CAS  Google Scholar 

  30. Chen S, Liu Y, Armstrong DW, Borell JI, Martinez-Terpel B, Matallama JL (1995) Enantioresolution of Substituted 2-Methoxy-6-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles on macrocyclic antibiotic and cyclodextrin stationary phases. J Liq Chromatogr Relat Technol 18:1495–1507

    Article  CAS  Google Scholar 

  31. Supelco Analytical (2008) Chirobiotic®, chiral by nature. Sigma-Aldrich Technical bulletin KWY T408131

    Google Scholar 

  32. Flieger J (2009) Improvement of chiral discrimination of acidic enantiomers on teicoplanin stationary phase by the use of chaotropic effect. J Liq Chromatogr Relat Technol 32:948–963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Berthod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berthod, A., Qiu, H.X., Staroverov, S.M., Kuznestov, M.A., Armstrong, D.W. (2010). Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_7

Download citation

Publish with us

Policies and ethics