Skip to main content

Preparation and Chiral Recognition of Polysaccharide-Based Selectors

  • Chapter
  • First Online:

Abstract

Among more than one hundred commercially available CSPs, those based on the phenylcarbamates of polysaccharides including cellulose and amylose have been recognized as the most powerful for the resolution of a wide range of racemates, and nearly 90% of chiral compounds can be resolved at the analytical level using the polysaccharide-based CSPs. Although the qualitative understanding of the chiral recognition mechanism of polysaccharide-based CSPs is rather difficult in contrast to the small molecule-based CSPs, several attempts have made for comprehension of the chromatographic behavior on the polysaccharide-based CSPs. In this chapter, after describing the development of the polysaccharide-based CSPs with high recognition ability, special emphasis is placed on the mechanistic study of the polysaccharide-based CSPs on the basis of spectroscopic and computational methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rogozhin SV, Davankov VA (1971) Ligand chromatography on asymmetric complex-forming sorbents as a new method for resolution of racemates. J Chem Soc Chem Commun 490–493

    Google Scholar 

  2. Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37:2593–2608

    Article  CAS  Google Scholar 

  3. Subramanian G (ed) (2007) Chiral separation techniques: a practical approach, 3rd completely revised and updated edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Taylor DR, Maher K (1992) Chiral separations by high-performance liquid chromatography. J Chromatogr Sci 30:67–85

    CAS  Google Scholar 

  5. Pirkle WH, Pochapsky TC (1989) Considerations of chiral recognition relevant to the liquid-chromatographic separation of enantiomers. Chem Rev 89:347–362

    Article  CAS  Google Scholar 

  6. Armstrong DW (1987) Optical isomer separation by liquid-chromatography. Anal Chem 59:84A–91A

    CAS  Google Scholar 

  7. Yamamoto C, Okamoto Y (2004) Optically active polymers for chiral separation. Bull Chem Soc Jpn 77:227–257

    Article  CAS  Google Scholar 

  8. Nakano T (2001) Optically active synthetic polymers as chiral stationary phases in HPLC. J Chromatogr A 906:205–225

    Article  CAS  Google Scholar 

  9. Chen XM, Yamamoto C, Okamoto Y (2007) Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure Appl Chem 79:1561–1573

    Article  CAS  Google Scholar 

  10. Kotake M, Sakan T, Nakamura N, Senoh S (1951) Resolution into optical isomers of some amino acids by paper chromatography. J Am Chem Soc 73:2973–2974

    Article  CAS  Google Scholar 

  11. Dalgliesh C (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J Chem Soc 3940–3942

    Google Scholar 

  12. Hess H, Burger G, Musso H (1978) Complete enantiomer separation by chromatography on potato starch. Angew Chem Int Ed 17:612–614

    Article  Google Scholar 

  13. Hesse G, Hagel R (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6:277–280

    Article  CAS  Google Scholar 

  14. Okamoto Y, Kawashima M, Yamamoto K, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem Lett 13:739–742

    Article  Google Scholar 

  15. Ichida A, Shibata T, Okamoto Y, Yuki Y, Namikoshi H, Toda Y (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19:280–284

    Article  CAS  Google Scholar 

  16. Okamoto Y, Aburatani R, Hatada K (1987) Chromatographic chiral resolution XIV- cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J Chromatogr 389:95–102

    Article  CAS  Google Scholar 

  17. Okamoto Y, Kaida Y (1994) Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J Chromatogr A 666:403–419

    Article  CAS  Google Scholar 

  18. Yashima E, Yamamoto C, Okamoto Y (1998) Polysaccharide-based chiral LC columns. Synlett 344–360

    Google Scholar 

  19. Okamoto Y, Kawashima M, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel. J Am Chem Soc 106:5357–5359

    Article  CAS  Google Scholar 

  20. Okamoto Y, Kawashima M, Hatada K (1986) Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J Chromatogr 363:173–186

    Article  CAS  Google Scholar 

  21. Okamoto Y, Ohashi T, Kaida Y, Yashima E (1993) Resolution of enantiomers by HPLC on tris(4-alkoxyphenylcarbamate)s of cellulose and amylase. Chirality 5:616–621

    Article  Google Scholar 

  22. Chankvetadze B, Yashima E, Okamoto Y (1994) Chloromethylphenylcarbamate derivatives of cellulose as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 670:39–49

    Article  CAS  Google Scholar 

  23. Okamoto Y, Aburatani R, Fukumoto T, Hatada K (1987) Useful chiral stationary phases for HPLC amylose tris(3,5-dimethylphenylcarbamate) and tris(3,5- dichlorophenylcarbamate) supported on silica gel. Chem Lett 16:1857–1860

    Article  Google Scholar 

  24. Chankvetadze B, Yashima E, Okamoto Y (1995) Dimethyl-, dichloro- and chloromethylphenylcarbamates of amylose as chiral stationary phases for HPLC. J Chromatogr A 694:101–109

    Article  CAS  Google Scholar 

  25. Yashima E, Yamamoto C, Okamoto Y (1995) Enantioseparation on fluoro- methylphenylcarbamates of cellulose and amylose as chiral stationary phases for HPLC. Polym J 27:856–861

    Article  CAS  Google Scholar 

  26. Yamamoto C, Yashima E, Okamoto Y (1999) Computational studies on chiral discrimination mechanism of phenylcarbamate derivatives of cellulose. Bull Chem Soc Jpn 72:1815–1825

    Article  CAS  Google Scholar 

  27. Wenslow RM, Wang T (2001) Solid-state NMR characterization of amylose tris (3,5-dimethylphenylcarbamate) chiral stationary-phase structure as a function of mobile-phase composition. Anal Chem 73:4190–4195

    Article  CAS  Google Scholar 

  28. Yamamoto C, Yashima E, Okamoto Y (2002) Structural analysis of amylose tris (3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC. J Am Chem Soc 124:12583–12589

    Article  CAS  Google Scholar 

  29. Yashima E, Yamada M, Okamoto Y (1994) An NMR study of chiral recognition relevant to the liquid chromatographic separation of enantiomers by a cellulose derivative. Chem Lett 23:579–582

    Article  Google Scholar 

  30. Yashima E, Yamada M, Yamamoto C, Nakashima M, Okamoto Y (1997) Chromatographic enantioseparation and chiral discrimination in NMR by trisphenylcarbamate derivatives of cellulose, amylose, oligosaccharides, and cyclodextrins. Enantiomer 2:225–240

    CAS  Google Scholar 

  31. Okamoto Y, Yashima E, Yamamoto C (1997) NMR studies of chiral discrimination by phenylcarbamate derivatives of cellulose. Macromol Symp 120:127–137

    Article  CAS  Google Scholar 

  32. Yashima E, Yamamoto C, Okamoto Y (1996) NMR studies of chiral discrimination relevant to the liquid chromatographic enantioseparation by a cellulose phenylcarbamate derivative. J Am Chem Soc 118:4036–4048

    Article  CAS  Google Scholar 

  33. Kubota T, Yamamoto C, Okamoto Y (2002) Chromatographic enantioseparation by cycloalkylcarbamate derivatives of cellulose and amylase. Chirality 14:372–376

    Article  CAS  Google Scholar 

  34. Ye YK, Bai S, Vyas S, Wirth MJ (2007) NMR and computational studies of chiral discrimination by amylose tris(3,5-dimethylphenylcarbamate). J Phys Chem B 111:1189–1198

    Article  CAS  Google Scholar 

  35. Lipkowitz KB (1994) Modeling Enantiodifferentiation in chiral chromatography. In: Subramanian G (ed) A Practical Approach to Chiral Separations by Liquid Chromatography. Wiley-VCH, New York

    Google Scholar 

  36. Lipkowitz KB (1995) Theoretical studies of type II–V chiral stationary phases. J Chromatogr A 694:15–37

    Article  CAS  Google Scholar 

  37. Lipkowitz KB (2001) Atomistic modeling of enantioselection in chromatography. J Chromatogr A 906:417–442

    Article  CAS  Google Scholar 

  38. Yashima E, Yamada M, Kaida Y, Okamoto Y (1995) Computational studies on chiral discrimination mechanism of cellulose trisphenylcarbamate. J Chromatogr A 694:347–354

    Article  CAS  Google Scholar 

  39. Theodorou DN, Suter UW (1985) Detailed molecular structure of a vinyl polymer glass. Macromolecules 18:1467–1478

    Article  CAS  Google Scholar 

  40. Aboul-Enein HY, Ali I, Laguerre M, Felix G (2002) Molecular modeling of enantiomeric resolution of methylphenidate on cellulose tris benzoate chiral stationary phase. J Liq Chromatogr Relat Technol 25:2739–2748

    Article  CAS  Google Scholar 

  41. O’Brien T, Crocker L, Thompson R, Thompson K, Toma PH, Conlon DA, Feibush B, Moeder C, Bicker G, Grinberg N (1997) Mechanistic aspects of chiral discrimination on modified cellulose. Anal Chem 69:1999–2007

    Article  Google Scholar 

  42. Kasat RB, Wang NHL, Franses EI (2007) Effects of backbone and side chain on the molecular environments of chiral cavities in polysaccharide-based biopolymers. Biomacromolecules 8:1676–1685

    Article  CAS  Google Scholar 

  43. Kasat RB, Zvinevich Y, Hillhouse HW, Thomson KT, Wang NHL, Franses EI (2006) Direct probing of sorbent-solvent interactions for amylose tris(3,5- dimethylphenylcarbamate) using infrared spectroscopy, X-ray diffraction, solid-state NMR, and DFT modeling. J Phys Chem B 110:14114–14122

    Article  CAS  Google Scholar 

  44. Kasat RB, Chin CY, Thomson KT, Franses EI, Wang NHL (2006) Interpretation of chromatographic retentions of simple solutes with an amylose-based sorbent using infrared spectroscopy and DFT modeling. Adsorption 12:405–416

    Article  CAS  Google Scholar 

  45. Kasat RB, Wang NHL, Franses EI (2008) Experimental probing and modeling of key sorbent-solute interactions of norephedrine enantiomers with polysaccharide-based chiral stationary phases. J Chromatogr A 1190:110–119

    Article  CAS  Google Scholar 

  46. Wang T, Wenslow RM (2003) Effects of alcohol mobile-phase modifiers on the structure and chiral selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. J Chromatogr A 1015:99–110

    Article  CAS  Google Scholar 

  47. Helmy R, Wang T (2005) Selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase as a function of its structure altered by changing concentration of ethanol or 2-propanol mobile-phase modifier. J Sep Sci 28:189–192

    Article  CAS  Google Scholar 

  48. Ma SL, Shen S, Lee H, Yee N, Senanayake C, Nafie LA, Grinberg N (2008) Vibrational circular dichroism of amylose carbamate: structure and solvent-induced conformational changes. Tetrahedron Asymmetry 19:2111–2114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikai, T., Okamoto, Y. (2010). Preparation and Chiral Recognition of Polysaccharide-Based Selectors. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_2

Download citation

Publish with us

Policies and ethics