Skip to main content

Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

Chiral ionic liquids (CILs) are a subclass of ionic liquids (ILs) in which the cation, anion, or both may be chiral. The chirality can be central, axial, or planar. CILs possess a number of unique advantageous properties which are inherited from ionic liquids including negligible vapor pressure, wide liquidus temperature range, high thermal stability, and high tunability. Due to their dual functionalities as chiral selectors and chiral solvents simultaneously, CILs recently have been widely used both in enantiomeric chromatographic separation and in chiral spectroscopic discrimination. In this chapter, the various applications of CILs in chiral chromatographic separations such as GC, HPLC, CE, and MEKC are reviewed. The applications of CILs in enantiomeric spectroscopic discrimination using techniques such as NMR, fluorescence, and NIR are described. In addition, chiral recognition and separation mechanism using the CILs as chiral selectors or chiral solvents is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha M, Achenie LEK, Ostrovsky GM (1999) Environmentally benign solvent design by global optimization. Comput Chem Eng 23:1381–1394

    CAS  Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  Google Scholar 

  3. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    CAS  Google Scholar 

  4. Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    CAS  Google Scholar 

  5. Huddleston JG, Rogers RD (1998) Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem Commun 1765–1766

    Google Scholar 

  6. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Sci St Petersburg 8:405–422

    Google Scholar 

  7. Hapiot P, Corinne L (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    CAS  Google Scholar 

  8. Del P, Mario G, Voth GA (2004) On the Structure and dynamics of ionic liquids. J Phys Chem B 108:1744–1752

    Google Scholar 

  9. Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4:73–80

    CAS  Google Scholar 

  10. Chum HL, Koch VR, Miller LL et al (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265

    CAS  Google Scholar 

  11. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun 965–967

    Google Scholar 

  12. Fuller J, Carlin RT, De L, Hugh C, Haworth D (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. Chem Commun 299–300

    Google Scholar 

  13. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  14. Visser AE, Swatloski RP, Reichert WM et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 135–136

    Google Scholar 

  15. Visser AE, Swatloski RP, Reichert WM (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36:2523–2529

    CAS  Google Scholar 

  16. Howarth J, Hanlon K, Fayne D et al (1997) Moisture-stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction. Tetrahedron Lett 38:3097–3100

    CAS  Google Scholar 

  17. Hayashi S, Hamaguchi H (2004) Discovery of a magnetic ionic liquid [bmim]FeCl4]. Chem Lett 33:1590–1591

    CAS  Google Scholar 

  18. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    CAS  Google Scholar 

  19. Zhao D, Fei Z, Geldbach TJ et al (2004) Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J Am Chem Soc 126:15876–15882

    CAS  Google Scholar 

  20. Bonnette F, Mincheva Z, Lavastre O (2006) Functionalized ionic liquids as new supports for peptide coupling and traceless catalyzed carbon-carbon coupling reactions. Comb Chem High Throughput Screen 9:229–232

    CAS  Google Scholar 

  21. Li M, Wang T, Pham PJ et al (2008) Liquid phase extraction and separation of noble organometallic catalysts by functionalized ionic liquids. Sep Sci Technol 43:828–841

    CAS  Google Scholar 

  22. Donato RK, Migliorini MV, Benvegnu MA et al (2007) The electrochemical properties of a platinum electrode in functionalized room temperature imidazolium ionic liquids. J Solid State Electrochem 11:1481–1487

    CAS  Google Scholar 

  23. Seki S, Kawano R, Watanabe M (2006) Ionic liquids and clean energy conversion and storage. Kagaku Kogyo 59:760–763

    CAS  Google Scholar 

  24. Bwambok DK, Marwani HM, Fernand VE et al (2008) Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties. Chirality 20:151–158

    CAS  Google Scholar 

  25. Chen D, Schmitkamp M, Francio G et al (2008) Enantioselective hydrogenation with racemic and enantiopure binap in the presence of a chiral ionic liquid. Angew Chem Int Ed 47:7339–7341

    CAS  Google Scholar 

  26. Tran CD, Oliveira D (2006) Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector. Anal Biochem 356:51–58

    CAS  Google Scholar 

  27. Herrmann WA, Goossen LJ, Koecher C (1996) Heterocyclic carbenes. 9. Chiral heterocyclic carbenes in asymmetric homogeneous catalysis. Angew Chem Int Ed 35:2805–2807

    CAS  Google Scholar 

  28. Earle MJ, McCormac PB, Seddon KR (1999) Diels-Alder reactions in ionic liquids. Green Chem 1:23–25

    CAS  Google Scholar 

  29. Bao W, Wang Z, Li Y (2003) Synthesis of chiral ionic liquids from natural amino acids. J Org Chem 68:591–593

    CAS  Google Scholar 

  30. Baudequin C, Bregeon D, Levillain J et al (2005) Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry 16:3921–3945

    CAS  Google Scholar 

  31. Baudequin C, Baudoux J, Levillain J (2003) Ionic liquids and chirality: opportunities and challenges. Tetrahedron Asymmetry 14:3081–3093

    CAS  Google Scholar 

  32. Patil ML, Sasai H (2008) Recent developments on chiral ionic liquids. Design, synthesis, and applications. Chem Record 8:98–108

    CAS  Google Scholar 

  33. Bica K, Gaertner P (2008) Metal-containing ionic liquids as efficient catalysts for hydroxymethylation in water. Eur J Org Chem 20:3453–3456

    Google Scholar 

  34. Winkel A, Reddy PVG, Wilhelm R (2008) Recent advances in the synthesis and application of chiral ionic liquids. Synthesis 7:999–1016

    Google Scholar 

  35. Ding J, Armstrong DW (2005) Chiral ionic liquids. Synthesis and applications. Chirality 17:281–292

    CAS  Google Scholar 

  36. Chen X, Li X, Hu A et al (2008) Advances in chiral ionic liquids derived from natural amino acids. Tetrahedron Asymmetry 19:1–14

    Google Scholar 

  37. Headly AD, Ni B (2007) Chiral imidazolium ionic liquids: their synthesis and influence on the outcome of organic reactions. Aldrichimica Acta 40:107–117

    CAS  Google Scholar 

  38. Zhou W, Xu Li, Qiu H et al (2008) Synthesis of a novel chiral ionic liquid and its application in enantioselective aldol reactions. Helv Chim Acta 91:53–59

    CAS  Google Scholar 

  39. Kumar V, Olsen CE, Schaeffer SJC et al (2007) Synthesis and applications of novel bis(ammonium) chiral ionic liquids derived from isomannide. Org Lett 9:3905–3908

    CAS  Google Scholar 

  40. Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819–6822

    CAS  Google Scholar 

  41. Tran CD, Mejac I (2008) Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis. J Chromatogr A 1204:204–209

    CAS  Google Scholar 

  42. Lv X, Wang Z, Bao W (2006) CuI catalyzed C-N bond forming reactions between aryl/heteroaryl bromides and imidazoles in [Bmim]BF4. Tetrahedron 62:4756–4761

    CAS  Google Scholar 

  43. Thanh GV, Pegot B, Loupy A (2004) Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine. Eur J Org Chem 1112–1116

    Google Scholar 

  44. Patrascu C, Sugisaki C, Mingotaud C et al (2004) New pyridinium chiral ionic liquids. Heterocycles 63:2033–2041

    CAS  Google Scholar 

  45. Malhotra SV, Wang Y (2006) Application of chiral ionic liquids in the copper catalyzed enantioselective 1,4-addition of diethylzinc to enones. Tetrahedron Asymmetry 17:1032–1035

    CAS  Google Scholar 

  46. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127:2398–2399

    CAS  Google Scholar 

  47. Gausepohl R, Buskens P, Kleinen J et al (2006) Highly enantioselective aza-Baylis-Hillman reaction in a chiral reaction medium. Angew Chem Int Ed 45:3689–3692

    CAS  Google Scholar 

  48. Branco LC, Gois PMP, Lourenco NMT et al (2006) Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chem Commun 2371–2372

    Google Scholar 

  49. Yu L, Jin X, Zeng X (2008) Methane interactions with polyaniline/butylmethylimidazolium camphorsulfonate ionic liquid composite. Langmuir 24:11631–11636

    CAS  Google Scholar 

  50. Baudoux J, Judeinstein P, Cahard D et al (2005) Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality. Tetrahedron Lett 46:1137–1140

    CAS  Google Scholar 

  51. Ishida Y, Miyauchi H, Saigo K (2002) Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality. Chem Commun 2240–2241

    Google Scholar 

  52. Freemantle M (1998) Designer solvents – Ionic liquids may boost clean technology development Chem Eng News 76:32

    Google Scholar 

  53. Seebach D, Oei HA (1975) Mechanism of electrochemical pinacolization. First asymmetric electrosynthesis in a chiral medium. Angew Chem 87:629–30

    CAS  Google Scholar 

  54. Antonietti M, Kuang D, Smarsly B (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992

    CAS  Google Scholar 

  55. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    CAS  Google Scholar 

  56. Jurčik V, Wilhem R (2006) The preparation of new enantiopure imidazolium salts and their evaluation as catalysts and shift reagents. Tetrahedron Asymmetry 17:801–810

    Google Scholar 

  57. Pegot B, Vo-Thanh G, Gori D (2004) First application of chiral ionic liquids in asymmetric Baylis-Hillman reaction. Tetrahedron Lett 45:6425–6428

    CAS  Google Scholar 

  58. Wang Z, Wang Q, Zhang Y (2005) Synthesis of new chiral ionic liquids from natural acids and their applications in enantioselective Michael addition. Tetrahedron Lett 46:4657–4660

    CAS  Google Scholar 

  59. Ding J, Desikan V, Han X (2005) Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo[2.2.2]octatrienes. Org Lett 7:335–337

    CAS  Google Scholar 

  60. Kiss L, Kurtan T, Antus S et al (2003) Further insight into the mechanism of Heck oxyarylation in the presence of chiral ligands. ARKIVOC 2003(v):69–76

    Google Scholar 

  61. Yadav LDS, Rai A, Rai V et al (2008) Chiral ionic liquid-catalyzed Biginelli reaction: stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron 64:1420–1429

    CAS  Google Scholar 

  62. Schulz PS, Mueller N, Boesmann A et al (2007) Effective chirality transfer in ionic liquids through ion-pairing effects. Angew Chem Int Ed 46:1293–1295

    CAS  Google Scholar 

  63. Kitazume T (2001) Optically active ionic liquid. US 2001031875

    Google Scholar 

  64. Caldwell J (1996) Importance of stereospecific bioanalytical monitoring in drug development. J Chromatogr A 719:3–13

    CAS  Google Scholar 

  65. Schurig V (2001) Separation of enantiomers by gas chromatography. J Chromatogr A 906:275–299

    CAS  Google Scholar 

  66. Vespalec R, Bocek P (1999) Chiral separations in capillary electrophoresis. Electrophoresis 20:2579–2591

    CAS  Google Scholar 

  67. Rizzi A (2001) Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 22:3079–3106

    CAS  Google Scholar 

  68. Shamsi SA, Warner IM (1997) Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis 18:853–872

    CAS  Google Scholar 

  69. Gübitz G (1990) Separation of drug enantiomers by HPLC using chiral stationary phases – a selective review. Chromatographia 30:555–564

    Google Scholar 

  70. Al Rabaa AR, Tfibel F, Merola F et al (1999) Spectroscopic and photophysical study of an anthryl probe: DNA binding and chiral recognition. J Chem Soc Perkin Trans 2: Phys Org Chem 341–352

    Google Scholar 

  71. Sawada M (1997) Chiral recognition detected by fast atom bombardment mass spectrometry. Mass Spectrom Rev 16:73–90

    CAS  Google Scholar 

  72. Fanali S (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 875:89–122

    CAS  Google Scholar 

  73. Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807:37–56

    CAS  Google Scholar 

  74. Ho Hyun M, Sung Jin J, Lee W (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J Chromatogr A 822:155–161

    CAS  Google Scholar 

  75. Fakayode SO, Williams AA, Busch MA (2006) The use of poly(sodium N-undecanoyl-l-leucylvalinate), poly(sodium N-undecanoyl-l-leucinate) and poly(sodium N-undecanoyl-l-valinate) surfactants as chiral selectors for determination of enantiomeric composition of samples by multivariate regression modeling of fluorescence spectral data. J Fluoresc 16:659–670

    CAS  Google Scholar 

  76. Yuan LM, Han Y, Zhou Y et al (2006) (R)-N,N,N-trimethyl-2-aminobutanol-bis(trifluoromethane-sulfon)imidate chiral ionic liquid used as chiral selector in HPCE, HPLC, and CGC. Anal Lett 39: 1439–1449

    CAS  Google Scholar 

  77. Francois Y, Varenne A, Juillerat E (2007) Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis. J Chromatogr A 1155:134–141

    CAS  Google Scholar 

  78. Maier V, Horáková J, Petr J et al (2006) Using of S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate as additive to the background electrolyte in capillary electrophoresis. J Chromatogr A 1103:337–343

    CAS  Google Scholar 

  79. Rizvi SAA, Shamsi SA (2006) Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal Chem 78:7061–7069

    CAS  Google Scholar 

  80. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    CAS  Google Scholar 

  81. Rickman BH, Matile S, Nakanishi K et al (1998) A two-step chemical/chiroptical method for determining absolute configurations of α-hydroxy acids. Tetrahedron 54:5041–5064

    CAS  Google Scholar 

  82. Buckingham AD, Fischer P (2006) Direct chiral discrimination in NMR spectroscopy. Chem Phys 324:111–116

    CAS  Google Scholar 

  83. Wenzei TJ (2007) Discrimination of chiral compounds using NMR spectroscopy. Wiley, Chicehster

    Google Scholar 

  84. Morris DG (2001) Stereochemistry. Royal Society of Chemistry, Great Britain

    Google Scholar 

  85. Parker D (1991) NMR determination of enantiomeric purity. Chem Rev 91:1441–1457

    CAS  Google Scholar 

  86. Roos G (2002) Compendium of chiral auxiliary applications. Academic Press, New York

    Google Scholar 

  87. Rinaldi PL (1982) The determination of absolute configuration using nuclear magnetic resonance techniques. Prog Nucl Magn Reson Spectrosc 15:291–352

    CAS  Google Scholar 

  88. Pirkle WH, Hoover DJ (1982) NMR chiral solvating agents. Top Stereochem 13:263–331

    CAS  Google Scholar 

  89. Pirkle WH (1966) The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra. J Am Chem Soc 88:1837

    CAS  Google Scholar 

  90. Dale JA, Dull DL, Mosher HS (1969) α-Methoxy-α-trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J Org Chem 34:2543–2549

    CAS  Google Scholar 

  91. Sullivan GR, Dale JA, Mosher HS (1973) Correlation of configuration and fluorine-19 chemical shifts of α-methoxy-α-trifluoromethylphenyl acetate derivatives. J Org Chem 38:2143–2147

    CAS  Google Scholar 

  92. Wasserscheid P, Boesmann A, Bolm C (2002) Synthesis and properties of ionic liquids derived from the “chiral pool”. Chem Commun 200–201

    Google Scholar 

  93. Levillain J, Dubant G, Abrunhosa I (2003) Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chem Commun 2914–2915

    Google Scholar 

  94. Clavier H, Boulanger L, Audic N (2004) Design and synthesis of imidazolinium salts derived from (L)-valine. Investigation of their potential in chiral molecular recognition. Chem Commun 1224–1225

    Google Scholar 

  95. Jurčík V, Gilani M, Wilhelm R (2006) Easily accessible chiral imidazolinium salts bearing two hydroxy-containing substituents as shift reagents and carbene precursors. Eur J Org Chem 5103–5109

    Google Scholar 

  96. Kumar V, Pei C, Olsen CE et al (2008) Novel carbohydrate-based chiral ammonium ionic liquids derived from isomannide. Tetrahedron Asymmetry 19:664–671

    CAS  Google Scholar 

  97. Patil ML, Rao CVL, Yonezawa K (2006) Design and synthesis of novel chiral spiro ionic liquids. Org Lett 8:227–230

    CAS  Google Scholar 

  98. Yasuhiro I, Daisuke S, Hiroyuki M et al (2004) Design and synthesis of novel imidazolium-based ionic liquids with a pseudo crown-ether moiety: diastereomeric interaction of a racemic ionic liquid with enantiopure europium complexes. Tetrahedron Lett 45:9455–9459

    Google Scholar 

  99. Ashraf SA, Pornputtkul Y, Kane-Maguire LAP (2007) Facile synthesis of a chiral ionic liquid derived from 1-phenylethylamine. Aust J Chem 60:64–67

    CAS  Google Scholar 

  100. Gao H-S, Hu Z-G, Wang J-J et al (2008) Synthesis and properties of novel chiral ionic liquids from l-proline. Aust J Chem 61:521–525

    CAS  Google Scholar 

  101. Yu S, Lindeman S, Tran CD (2008) Chiral ionic liquids: synthesis, properties, and enantiomeric recognition. J Org Chem 73:2576–2591

    CAS  Google Scholar 

  102. Li M, Gardella J, Bwambok DK (2009) A combinatorial approach to enantiomeric discrimination: synthesis and 19F NMR screening of a chiral ionic liquid – modified silane library. J Comb Chem 11:1105–1114

    CAS  Google Scholar 

  103. Rawitch AB, Weber G (1972) Reversible association of lysozyme and thyroglobulin. Cooperative binding by near-neighbor interactions. J Bio Chem 247:680–685

    CAS  Google Scholar 

  104. James TD, Sandanayake KRAS, Shinkai S (1995) Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374:345–347

    CAS  Google Scholar 

  105. Corradini R, Sartor G, Marchelli R et al (1992) Enantioselective fluorescence quenching by a chiral copper(II) complex in ligand exchange equilibria. J Chem Soc Perkin Trans 2 Phys Org Chem 11:1979–83

    Google Scholar 

  106. Lin J, Hu Q, Xu M et al (2002) A practical enantioselective fluorescent sensor for mandelic acid. J Am Chem Soc 124:2088–2089

    CAS  Google Scholar 

  107. Pischel U, Abad S, Miranda MA (2003) Stereoselective fluorescence quenching by photoinduced electron transfer in naphthalene-amine dyads. Chem Commun 1088–1089

    Google Scholar 

  108. Xu M H, Lin J, Hu Q et al (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:14239–14246

    CAS  Google Scholar 

  109. Liu T, Chen Y, Zhang K et al (2001) Enantiomeric recognition of chiral 3,3-bridged-1,1’-binaphthol dimer toward α-phenylethylamine and α-amino acid ester. Chirality 13:595–600

    CAS  Google Scholar 

  110. Beer G, Daub J, Rurack K (2001) Chiral discrimination with a fluorescent boron-dipyrromethene dye. Chem Commun 1138–1139

    Google Scholar 

  111. Abe Y, Shoji T, Matsubara M et al (2000) Chiral discrimination of N-carbazole-carbonyl derivatives of α-amino acids with a short linear alkyl side chain by bovine serum albumin. Chirality 12:565–567

    CAS  Google Scholar 

  112. Pagliari S, Corradini R, Galaverna G et al (2000) Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent β-cyclodextrins. Tetrahedron Lett 41:3691–3695

    CAS  Google Scholar 

  113. McCarroll ME, Billiot FH, Warner IM (2001) Fluorescence anisotropy as a measure of chiral recognition. J Am Chem Soc 123:3173–3174

    CAS  Google Scholar 

  114. Adhikary R, Bose S, Mukherjee P et al (2008) Influence of chiral ionic liquids on the excited-state properties of naproxen analogs. J Phys Chem B 112:7555–7559

    CAS  Google Scholar 

  115. Matthias O (1999) Chemometrics. Wiley-VCH, Weinheim

    Google Scholar 

  116. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics – a practical guide. Wiley-Interscience, New York

    Google Scholar 

  117. Massart DL, Vandeginste BGM, Buydens LM et al (1997) Handbook of chemometrics and qualimetrics, part A. Elsevier, Amsterdam

    Google Scholar 

  118. Vandeginste BG, Massart MD, Buydens MC et al (1998) Handbook of chemometrics and qualimetrics, part B. Elsevier, Amsterdam

    Google Scholar 

  119. Martens H, Naes T (1989) Multivariate calibration. Wiley, Chicehster

    Google Scholar 

  120. Edmund RM (1991) Factor analysis in chemistry. Wiley-Interscience, New York

    Google Scholar 

  121. Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New York

    Google Scholar 

  122. Muhammad AS, Deborah LI, Bruce RK (1986) Chemometrics. Wiley-Interscience, New York

    Google Scholar 

  123. Busch KW, Busch MA (2006) Chiral analysis by regression modeling of spectral data in chiral analysis. In: Kenneth WB, Marianna AB (eds) Elsevier, Amsterdam, pp 363–396

    Google Scholar 

  124. Busch KW, Swamidoss IM, Fakayode SO et al (2003) Determination of the enantiomeric composition of guest molecules by chemometric analysis of the UV-visible spectra of cyclodextrin guest-host complexes. J Am Chem Soc 125:1690–1691

    CAS  Google Scholar 

  125. Busch KW, Swamidoss IM, Fakayode SO et al (2004) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of cyclodextrin guest-host complexes. Anal Chim Acta 525:53–62

    CAS  Google Scholar 

  126. Fakayode SO, Swamidoss IM, Busch MA et al (2005) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest-host complexes formed with modified cyclodextrins. Talanta 65:838–845

    CAS  Google Scholar 

  127. Tran CD, Oliveira D (2006) Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector. Anal Biochem 356:51–58

    CAS  Google Scholar 

  128. Li M, De Rooy SL, Bwambok DK et al (2009) Magnetic chiral ionic liquids derived from amino acids. Chem Commun 6922–6924

    Google Scholar 

  129. Tran CD, Oliveira D, Yu S (2006) Chiral ionic liquid that functions as both solvent and chiral selector for the determination of enantiomeric compositions of pharmaceutical products. Anal Chem 78:1349–1356

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the NSF for financial support during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isiah M. Warner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, M., Bwambok, D.K., Fakayode, S.O., Warner, I.M. (2010). Chiral Ionic Liquids in Chromatographic Separation and Spectroscopic Discrimination. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_11

Download citation

Publish with us

Policies and ethics