Skip to main content

Enantioselective Properties of Nucleic Acid Aptamer Molecular Recognition Elements

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

Target-specific chiral selectors, which are characterized by a predictable elution order depending on the target enantiomer employed for the selection of the chiral selector, have recently received much attention in the enantioselective analysis field. In this context, bioaffinity-based molecular recognition tools such as nucleic acid aptamers have notably demonstrated very attractive features for the chiral discrimination of active molecules. In this chapter, the enantioselective properties of aptamer chiral selectors and the major factors that control and modulate the liquid chromatography and capillary electrophoresis enantiomer separation are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francotte ER (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    Article  CAS  Google Scholar 

  2. Ansell RJ (2005) Molecularly imprinted polymers for the enantioseparation of chiral drugs. Adv Drug Deliv Rev 57:1809–1835

    Article  CAS  Google Scholar 

  3. Nilsson J, Spégel P, Nilsson S (2004) Molecularly imprinted polymer formats for capillary electrochromatography. J Chromatogr B 804:3–12

    Article  CAS  Google Scholar 

  4. Hofstetter H, Hofstetter O (2005) Antibodies as tailor-made chiral selectors for detection and separation of stereoisomers. Trends Anal Chem 10:869–879

    Article  Google Scholar 

  5. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  6. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  Google Scholar 

  7. Tombelli S, Mascini M (2009) Aptamers as molecular tools for bioanalytical methods. Curr Opin Mol Ther 11:179–188

    CAS  Google Scholar 

  8. Müller M, Weigand JE, Weichenrieder O et al (2006) Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res 34:2607–2617

    Article  Google Scholar 

  9. Hermann T, Patel DJ (2001) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  Google Scholar 

  10. Latham MP, Zimmermann GR, Pardi A (2009) NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J Am Chem Soc 131:5052–5053

    Article  CAS  Google Scholar 

  11. Schneider C, Sühnel J (1999) A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex. Biopolymers 50:287–302

    Article  CAS  Google Scholar 

  12. Bishop GR, Ren J, Polander BC et al (2007) Energetic basis of molecular recognition in a DNA aptamer. Biophys Chem 126:165–175

    Article  CAS  Google Scholar 

  13. Lin PH, Yen SL, Lin MS et al (2008) Microcalorimetrics studies of the thermodynamics and binding mechanism between l-tyrosinamide and aptamer. J Phys Chem B 112:6665–6673

    Article  CAS  Google Scholar 

  14. Jenison RD, Gill SC, Pardi A et al (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  Google Scholar 

  15. Klussmann S, Nolte A, Bald R et al (1996) Mirror-image RNA that binds d-adenosine. Nat Biotechnol 14:1112–1115

    Article  CAS  Google Scholar 

  16. Shoji A, Kuwahara M, Ozaki H et al (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129:1456–1464

    Article  CAS  Google Scholar 

  17. Geiger A, Burgstaller P, von der Eltz H et al (1996) RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036

    Article  CAS  Google Scholar 

  18. Majerfeld I, Puthenvedu D, Yarus M (2005) RNA affinity for molecular l-histidine; genetic code origins. J Mol Evol 61:226–235

    Article  CAS  Google Scholar 

  19. Majerfeld I, Yarus M (2005) A diminutive and specific RNA binding site for l-tryptophan. Nucleic Acids Res 33:5482–5493

    Article  CAS  Google Scholar 

  20. Williams KP, Liu XH, Schumacher TN et al (1997) Bioactive and nuclease-resistant l-DNA ligand of vasopressin. Proc Natl Acad Sci USA 94:11285–11290

    Article  CAS  Google Scholar 

  21. Michaud E, Jourdan EA, Villet A et al (2003) A DNA aptamer as a new target-specific chiral selector for HPLC. J Am Chem Soc 125:8672–8679

    Article  CAS  Google Scholar 

  22. Michaud M, Jourdan E, Ravelet C et al (2004) Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Anal Chem 76:1015–1020

    Article  CAS  Google Scholar 

  23. Ruta J, Ravelet C, Désiré J et al (2008) Covalently bonded DNA aptamer chiral stationary phase for the chromatographic resolution of adenosine. Anal Bioanal Chem 390:1051–1057

    Article  CAS  Google Scholar 

  24. Brumbt A, Ravelet C, Grosset C et al (2005) Chiral stationary phase based on a biostable l-RNA aptamer. Anal Chem 77:1993–1998

    Article  CAS  Google Scholar 

  25. Ruta J, Grosset C, Ravelet C et al (2007) Chiral resolution of histidine using an anti-d-histidine l-RNA aptamer microbore column. J Chromatogr B 845:186–190

    Article  CAS  Google Scholar 

  26. Ravelet C, Boulkedid R, Ravel A et al (2005) A l-RNA aptamer chiral stationary phase for resolution of target and related compounds. J Chromatogr A 1076:62–70

    Article  CAS  Google Scholar 

  27. Ruta J, Ravelet C, Grosset C et al (2006) Enantiomeric separation using an l-RNA aptamer as chiral additive in partial-filling capillary electrophoresis. Anal Chem 78:3032–3039

    Article  CAS  Google Scholar 

  28. Ruta J, Perrier S, Ravelet C et al (2009) Aptamer-modified micellar electrokinetic chromatography for the enantioseparation of nucleotides. Anal Chem 81:1169–1176

    Article  CAS  Google Scholar 

  29. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  Google Scholar 

  30. Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Article  CAS  Google Scholar 

  31. Tittelbach V, Gilpin RK (1995) Species dependency of the liquid chromatographic properties of silica-immobilized serum albumins. Anal Chem 67:44–47

    Article  CAS  Google Scholar 

  32. Hofstetter O, Lindstrom H, Hofstetter H (2004) Effect of the mobile phase on antibody-based enantiomer separations of amino acids in high-performance liquid chromatography. J Chromatogr A 1049:85–95

    CAS  Google Scholar 

  33. Ruta J, Ravelet C, Baussanne I et al (2007) Aptamer-based enantioselective competitive binding assay for the trace enantiomer detection. Anal Chem 79:4716–4719

    Article  CAS  Google Scholar 

  34. Ruta J, Ravelet C, Baussane I et al (2008) Competitive affinity capillary electrophoresis assay based on a “hybrid” pre-incubation/on-capillary mixing format using an enantioselective aptamer as affinity ligand. J Sep Sci 31:2239–2243

    Article  CAS  Google Scholar 

  35. Ruta J, Perrier S, Ravelet C et al (2009) Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem 81:7468–7473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Peyrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peyrin, E. (2010). Enantioselective Properties of Nucleic Acid Aptamer Molecular Recognition Elements. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_10

Download citation

Publish with us

Policies and ethics