Skip to main content

Chiral Recognition Mechanisms in Enantiomers Separations: A General View

  • Chapter
  • First Online:

Abstract

In 1858, Louis Pasteur, the first to accomplish the separation of two enantiomers wrote: “Most natural organic products, the essential products of life, are asymmetric and possess such asymmetry that they are not superimposable on their image. This establishes perhaps the only well-marked line of demarcation that can at present be drawn between the chemistry of dead matter and the chemistry of living matter.” Enantiomers have exactly the same properties in isotropic conditions. They behave differently only in anisotropic conditions. Chiral–chiral interactions are needed for enantiomeric separations. The fundamental mechanisms for chiral separations are listed along with the commercially available chiral selectors. Two chemometric examples are commented: one on quantitative structure enantioselectivity relationship and the second one on linear solvation energy relationships. It is shown that the solvents used in the mobile phase may play the most critical role in the chiral mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thayer AM (2008) Interaction yields. Chem Eng News 86(31):12–20

    Article  Google Scholar 

  2. Caner H, Groner E, Levy L (2004) Trends in the development of chiral drugs. Drug Discov Today 9:105–110

    Article  CAS  Google Scholar 

  3. Millership JS, Fitzpatrick A (1993) Commonly used chiral drugs: a survey. Chirality 5:573–576

    Article  CAS  Google Scholar 

  4. Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed 5:385–415

    Article  CAS  Google Scholar 

  5. Pasteur L (1858) Transformation of the two kinds of tartaric acid into racemic acid. Discovery of inactive tartaric acid. New method of separating racemic acid into the two tartaric acids, right and left. C R Acad Sci 46:615–618

    Google Scholar 

  6. Kunz H (2002) Emil Fischer—unequalled classicist, master of organic chemistry research, and inspired trailblazer of biological chemistry. Angew Chem Int Ed 41:4439–4451

    Article  CAS  Google Scholar 

  7. Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27:1257–1266

    CAS  Google Scholar 

  8. Dagliesh CE (1952) Optical resolution of aromatic amino acids on paper chromatograms. J Chem Soc 137:3940–3952

    Article  Google Scholar 

  9. Pirkle WH, Pochapsky TC (1987) Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes. J Am Chem Soc 109:5975–5982

    Article  CAS  Google Scholar 

  10. Taylor DR (1993) Chiral separations by gas chromatography. In: Baugh PJ (ed) Gas chromatography, a practical approach, Ch 8. IRL Press, New York, NY, p 252

    Google Scholar 

  11. Bargmann-Leyder N, Caude M (2001) Séparation chirale par chromatographie en phase liquide, en phase supercritique et gazeuse. In: Techniques pour l'ingénieur, article P1470, Paris

    Google Scholar 

  12. Davankov VA (1997) The nature of chiral recognition: is it a three-point interaction? Chirality 9:99–102

    Article  CAS  Google Scholar 

  13. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099

    Article  Google Scholar 

  14. Nafie LA (1997) Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem 48:357–386

    Article  CAS  Google Scholar 

  15. McCaroll ME, Billiot FH, Warner IM (2001) Fluorescence anisotropy as a measure of chiral recognition. J Am Chem Soc 123:3173–3174

    Article  Google Scholar 

  16. Berthod A, He L, Beesley TE (2004) Temperature and enantioseparation by macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 1060:205–214

    Article  CAS  Google Scholar 

  17. Boehm RE, Martire DE, Armstrong DW (1988) Theoretical considerations concerning the separation of enantiomeric solutes by liquid chromatography. Anal Chem 60:522–528

    Article  CAS  Google Scholar 

  18. Fornsted T, Sajonz P, Guiochon G (1998) A closer study of chiral recognition mechanisms. Chirality 10:375–381

    Article  Google Scholar 

  19. Fornsted T, Zhong G, Bensetiti Z, Guiochon G (1996) Experimental and theoretical study of the adsorption behavior and mass transfer kinetics of propranolol enantiomers on cellulose protein as the selector. Anal Chem 68:2370–2378

    Article  Google Scholar 

  20. Roussel C, Piras P (2009) Chirbase: a molecular database for liquid chromatography. http://chirbase.u-3mrs.fr. Accessed February 3, 2010

  21. Kafri R, Lancet D (2004) Probability rule for chiral recognition. Chirality 16:369–378

    Article  CAS  Google Scholar 

  22. Davankov VA (2000) 30 years of chiral ligand exchange. Enantiomer 5:209–223

    CAS  Google Scholar 

  23. Mikes F, Boschart G, Gil-Av E (1976) Resolution of optical isomers by high-performance liquid chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J Chromatogr 122:205–221

    Article  CAS  Google Scholar 

  24. Pirkle WH, Finn JM, Schreiner JL, Hamper BCJ (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J Am Chem Soc 103:3964–3966

    Article  CAS  Google Scholar 

  25. Welch CJ (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J Chromatogr A 666:3–26

    Article  CAS  Google Scholar 

  26. Lu Y, Li CX, Zhang H, Liu XH (2003) Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal Chim Acta 489:33–43

    Article  CAS  Google Scholar 

  27. Kaplan L, Sousa LR, Hoffman DH, Cram DJ (1974) Total optical resolution of amino esters by designed host-guest relations in molecular complexation. J Am Chem Soc 96:7100–7101

    Article  CAS  Google Scholar 

  28. Yuki H, Okamoto Y, Okamoto I (1980) Resolution of racemic compounds by optically active poly(triphenylmethyl methacrylate). J Am Chem Soc 102:6356–6358

    Article  CAS  Google Scholar 

  29. Cavazzini A, Dondi F, Marmai S, Minghini E, Villani C, Rompietti R, Gasparrini F (2005) Adsorption equilibria of benzodiazepines on a hybrid polymeric chiral stationary phase. Anal Chem 77:3113–3122

    Article  CAS  Google Scholar 

  30. Shamsi SA, Valle BC, Billiot F, Warner IM (2003) Polysodium N-Undecanoyl-L-leucylvalinate: a versatile chiral selector for micellar electrokinetic chromatography. Anal Chem 75:379–387

    Article  CAS  Google Scholar 

  31. Schill G, Wainer IW, Barkan SA (1986) Chiral separations of cationic and anionic drugs on an α1-acid glycoprotein-bonded stationary phase (Enantio-Pac). II. Influence of mobile phase additives and pH on chiral resolution and retention. J Chromatogr 365:73–88

    Article  CAS  Google Scholar 

  32. Shibata T, Mori K, Okamoto Y (1989) Polysaccharides phases. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood, New York, pp 336–398

    Google Scholar 

  33. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22:411–415

    CAS  Google Scholar 

  34. Han SM, Han YI, Armstrong DW (1988) Structural factors affecting chiral recognition and separation on β-cyclodextrin bonded phases. J Chromatogr 441:376–381

    Article  CAS  Google Scholar 

  35. Berthod A, Chang SC, Armstrong DW (1992) Empirical procedure that uses molecular structure to predict enantioselectivity of chiral stationary phases. Anal Chem 64:395–404

    Article  CAS  Google Scholar 

  36. Chang SC, Reid GL, Chen S, Armstrong DW (1993) Evaluation of a new polar-organic high-performance liquid chromatographic mobile phase for cyclodextrin-bonded chiral stationary phases. Trends Analyt Chem 12:144–153

    Article  CAS  Google Scholar 

  37. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Cheng JR (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  38. Berthod A, Liu Y, Bagwill C, Armstrong DW (1996) Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J Chromatogr A 731:123–137

    Article  CAS  Google Scholar 

  39. Cavazzini A, Nadalini G, Dondi F, Gasparrini F, Ciogli A, Villani C (2004) Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase. J Chromatogr A 1031:143–158

    Article  CAS  Google Scholar 

  40. Xiao TL, Armstrong DW (2004) Macrocyclic antibiotics, Chapter 4. In: Gübitz G, Schmid MG (eds) Chiral separations, methods and protocols. Humana Press, Totowa, NJ, pp 113–171

    Google Scholar 

  41. Lämmerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors. I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741:33–48

    Article  Google Scholar 

  42. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  43. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of AlogP and ClogP methods. J Phys Chem A 102:3762–3772

    Article  CAS  Google Scholar 

  44. Vitha M, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194

    Article  CAS  Google Scholar 

  45. Abraham MH, Ibrahim A, Zissimos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037:29–47

    Article  CAS  Google Scholar 

  46. Wislon NS, Dolan JW, Snyder LR, Carr PW, Sander LC (2002) Column selectivity in reversed-phase liquid chromatography: III. The physico-chemical basis of selectivity. J Chromatogr A 961:217–236

    Article  Google Scholar 

  47. Berthod A, Mitchell CR, Armstrong DW (2007) Could linear solvation energy relationships give insights into chiral recognition mechanisms? 1-π-π and charge interaction in the reversed versus the normal phase mode. J Chromatogr A 1166:61–69

    Article  CAS  Google Scholar 

  48. Mitchell CR, Armstrong DW, Berthod A (2007) Could linear solvation energy relationships give insights into chiral recognition mechanisms? 2-Characterization of macrocyclic glycopeptide stationary phases. J Chromatogr A 1166:70–78

    Article  CAS  Google Scholar 

  49. Kreidler D, Czesla H, Schurig V (2008) A mixed stationary phase containing two versatile cyclodextrin-based selectors for the simultaneous gas chromatographic enantioseparation of racemic alkanes and racemic α-amino acid derivatives. J Chromatogr B 875:208–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Berthod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berthod, A. (2010). Chiral Recognition Mechanisms in Enantiomers Separations: A General View. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_1

Download citation

Publish with us

Policies and ethics