Skip to main content

Rapid Radiation in the Barley Genus Hordeum (Poaceae) During the Pleistocene in the Americas

  • Chapter
  • First Online:
Book cover Evolution in Action

Abstract

Evidence was found for a rapid radiation of the grass genus Hordeum in the Americas during the last 2 million years, accumulating 23 species in South and North America, while only 10 Hordeum species occur in other regions of the world. The differences in species richness are caused by distinct evolutionary mechanisms in the Americas and Eurasia, as recovered by the integration of phylogenetic and phylogeographic analyses with modeling of ecological niches. The Eurasian region is mainly characterized by a loss of biodiversity during the Pleistocene glaciations, while vivid speciation took place in the Americas during this time period. Thus, speciation in Eurasia was mainly affected by severe genetic bottlenecks probably due to small populations surviving in ice-age refugia, while such restrictions in New World species groups seem less pronounced. Particularly in southern Patagonia, speciation was due to multiple geographical subdivisions of relatively large populations during the last million years, without measurable reduction of genetic diversity or population sizes. This together with long-distance colonization of remote areas was the main cause of species diversity in the New World.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1129–1208

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Baldwin BG, Sanderson MJ (1998) Age and rate diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 95:9402–9406

    Article  PubMed  CAS  Google Scholar 

  • Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR (2006) A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Mol Ecol 15:4409–4424

    Article  PubMed  Google Scholar 

  • Baum BR, Johnson DA (2003) The South African Hordeum capense is more closely related to some American Hordeum species than to the European Hordeum secalinum: a perspective based on the 5S rDNA units (Triticeae: Poaceae). Can J Bot 81:1–11

    Article  CAS  Google Scholar 

  • Blattner FR (2004) Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33:289–299

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR (2006) Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytol 169:603–614

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR (2009) Advances in phylogenetic analysis and new infrageneric classification of Hordeum (Poaceae). Breed Sci 59:471–480

    Article  CAS  Google Scholar 

  • von Bothmer R, Jacobsen N (1985) Origin, taxonomy and related species. In: Rasmussen DC (ed) Barley. Monographs in agronomy, vol 26. American Society of Agronomy, Madison, WI, pp 19–56

    Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn, Systematic and ecogeographic studies on crop genepools 7. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection, 6th edn. John Murray, London

    Google Scholar 

  • Dewey RD (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279

    Chapter  Google Scholar 

  • Doebley J, von Bothmer R, Larson S (1992) Chloroplast DNA variation and the phylogeny of Hordeum (Poaceae). Am J Bot 79:576–584

    Article  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Ihlow A, Blattner FR (2007) Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae) – niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 16:1713–1727

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Blattner FR (2010) Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol Phylogenet Evol 55:650–659

    PubMed  Google Scholar 

  • Jakob SS, Martinez-Meyer E, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicates Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Mol Biol Evol 26:907–923

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid South American Hordeum species (Poaceae). Mol Ecol 19:1423–1438

    Article  PubMed  Google Scholar 

  • Komatsuda T, Tanno K, Salomon B, Bryngelsson T, von Bothmer R (1999) Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome 42:973–981

    PubMed  CAS  Google Scholar 

  • Linde-Laursen I, von Bothmer R, Jacobsen N (1992) Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas 116:111–116

    Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • Mason-Gamer RJ (2001) Origin of North American species of Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst Bot 26:757–768

    Google Scholar 

  • Nevski SA (1941) Beiträge zur Kenntnis der wild wachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. und H. distichon L. (Versuch einer Monographie der Gattung Hordeum). Trudy Bot Inst Akad Nauk SSSR Ser 1(5):64–255

    Google Scholar 

  • Nishikawa T, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K (2002) Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. Genome 45:1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O (2003) Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Syst Bot 28:293–306

    Google Scholar 

  • Petersen G, Seberg O (2004) On the origin of the tetraploid species Hordeum capense and H. secalinum (Poaceae). Syst Bot 29:862–873

    Article  Google Scholar 

  • Pleines T, Blattner FR (2008) Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species (Poaceae: Triticeae). Taxon 57:875–881

    Google Scholar 

  • Pleines T, Jakob SS, Blattner FR (2009) Application of non-coding DNA regions in intraspecific analyses. Plant Syst Evol 282:281–294

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9

    Article  CAS  Google Scholar 

  • Taketa S, Ando H, Takeda K, von Bothmer R (2001) Physical location of 5S and 18S–25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity 86:522–530

    Article  PubMed  CAS  Google Scholar 

  • Thingsgaard K (2001) Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida). Heredity 87:485–496

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freuters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang RRC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1996) Genome symbols in the Triticeae. In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of the 2nd international Triticeae symposium. Utah State University, Logan, pp 29–34

    Google Scholar 

Download references

Acknowledgments

We thank M. Arriaga and R. Gomez (Natural History Museum “Bernado Rivadavia, Buenos Aires) for kindly providing help in the organization of field work in Patagonia, P. Cichero (APN, Buenos Aires) for research permits in Argentine national parks, many friends, colleagues and gene banks for plant materials, and the Deutsche Forschungsgemeinschaft for financial support in the frame of SPP 1127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Blattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blattner, F.R., Pleines, T., Jakob, S.S. (2010). Rapid Radiation in the Barley Genus Hordeum (Poaceae) During the Pleistocene in the Americas. In: Glaubrecht, M. (eds) Evolution in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12425-9_2

Download citation

Publish with us

Policies and ethics