Skip to main content

Bud Dormancy in Perennial Plants: A Mechanism for Survival

  • Chapter
  • First Online:
Dormancy and Resistance in Harsh Environments

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

Dormancy in vegetative buds of perennial plants plays an important role for surviving harsh environmental conditions. Identifying the genetic and physiological mechanisms regulating dormancy in these vegetative structures will allow manipulation of plant growth and development in both crops and weeds. Model plants have been used to study the physiological effects that photoperiod and temperature impart on dormancy regulation in perennial buds. At the molecular level, models derived through analysis of the transcriptome have shed new light on multiple cellular pathways and physiological processes associated with dormancy transitions and, in some cases, have revealed overlap with pathways regulating flowering and cold acclimation. In this chapter, we discuss proposed models based on advances to our understanding of physiological and molecular factors affecting dormancy regulation in vegetative buds of perennials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabadi D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409–417

    Article  PubMed  CAS  Google Scholar 

  • Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59(6):1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Allona I, Ramos A, Ibáñez C, Contreras A, Casado R, Aragoncillo C (2008) Review. Molecular control of winter dormancy establishment in trees. Span J Agric Res 6:201–210 (Special issue)

    Google Scholar 

  • Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16(10):2553–2559

    Article  PubMed  CAS  Google Scholar 

  • Anderson JV, Chao WS, Horvath DP (2001) A current review on the regulation of dormancy in vegetative buds. Weed Sci 49:581–589

    Article  CAS  Google Scholar 

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28(12):1567–1578

    Article  CAS  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38(5):911–921

    Google Scholar 

  • Benedict C, Geisler M, Trygg J, Hunter N, Hurry V (2006) Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in arabidopsis. Plant Physiol 141:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA (2006) Axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95(5):436–444

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Campbell MA, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8:317–328

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination of the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20:2586–2602

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu J-Y, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  PubMed  CAS  Google Scholar 

  • Chao WS, Serpe MD (2009) Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge. Plant Mol Biol 73:227–239

    Google Scholar 

  • Chao WS, Horvath DP, Anderson JV, Foley ME (2005) Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Sci 53(6):929–937

    Article  CAS  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula). Weed Sci 54:59–68

    Article  CAS  Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV, Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Dev Biol 1(1):49–56, ISSN 1749-4753

    Google Scholar 

  • Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238

    Article  CAS  Google Scholar 

  • Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5(8):e222. doi:10.1371/journal.pbio.0050222

    Article  PubMed  CAS  Google Scholar 

  • Destefano-Beltrán L, Knauber D, Huckle L, Suttle JC (2006) Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol 61:687–697

    Article  PubMed  CAS  Google Scholar 

  • Diaz MD (1974) Vegetative and reproductive growth habits of evergreen peach trees in Mexico. Proceedings from the 19th International Horticulture Congress, vol 18, Warsaw, p 525

    Google Scholar 

  • DoÄŸramaci M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Extended low temperature impacts dormancy status, flowering competence, and transcript profiles in crown 571 buds of leafy spurge. Plant Mol Bio 73:207–226

    Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME (2000) The role of phytochrome A and gibberellins in growth under long and short day conditions. Studies in hybrid aspen. Swedish University of Agricultural Sciences, Umea, ISSN 1401-6230

    Google Scholar 

  • Farrona S, Hurtado L, Bowman JL, Reyes JC (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131(20):4965–4975

    Article  PubMed  CAS  Google Scholar 

  • Fennell A, Hoover E (1991) Photoperiod influences growth, bud dormancy, and cold-acclimation in Vitis-Labruscana and V-Riparia. J Am Soc Hortic Sci 116(2):270–273

    Google Scholar 

  • Foley ME, Anderson JV, Horvath DP (2009) The effects of temperature, photoperiod, and vernalization on regrowth and flowering competence in Euphorbia esula (Euphorbiaceae) crown buds. Botany 87:986–992

    Article  CAS  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Ann Bot 92:199–206

    Article  PubMed  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–195

    Article  PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing tolerance: role of protein metabolism. Annu Rev Plant Phys Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Ann Rev Plant Biol 60:357–377

    Article  CAS  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10(1):30–35

    Article  PubMed  CAS  Google Scholar 

  • Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hort 115:309–314

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25(1):109–114

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    Article  PubMed  CAS  Google Scholar 

  • Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007) A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–741

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Sung S, Kim D, Anderson JV (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Google Scholar 

  • Horvath DP (1999) Role of mature leaves in inhibition of root bud growth in Euphorbia esula L. Weed Sci 47:544–550

    CAS  Google Scholar 

  • Horvath DP (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Chao WS, Anderson JV (2002) Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol 128(4):1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when the grow signals regulating bud dormancy. Trends Plant Sci 8(11):534–539

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536–552

    Article  PubMed  CAS  Google Scholar 

  • Howe GT, Gardner G, Hackett WP, Furnier GR (1996) Phytochrome control of short-day-induced bud set in black cottonwood. Physiol Plant 97:95–103

    Article  CAS  Google Scholar 

  • Ishikawa M, Kiba T, Chua NH (2006) The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J 46:736–746

    Article  PubMed  CAS  Google Scholar 

  • Jeknic Z, Chen THH (1999) Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods. Plant Cell Physiol 40(1):25–35

    Article  CAS  Google Scholar 

  • Kim H-J, Kim Y-K, Park J-Y, Kim J (2002) Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 29(6):693–704

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Kwolek AVA, Woolhouse HW (1982) Studies on the dormancy of Calluna-Vulgaris (L) Hull, during winter – the effect of photoperiod and temperature on the induction of dormancy and the annual cycle of development. Ann Bot 49(3):367–376

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Law RD, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol Plant 120(4):642–649

    Article  CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  PubMed  CAS  Google Scholar 

  • Li C, Junttila O, Ernstsen A, Heino P, Palva ET (2003) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol Plant 117:206–212

    Article  CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of [Purnus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed  CAS  Google Scholar 

  • Mas P, Yanovsky MJ (2009) Time for circadian rhythms: plants get synchronized. Curr Opin Plant Biol 12:574–579

    Article  PubMed  CAS  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2008) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics. doi:10.1007/s10142-008-0090-y

    PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60:328–339

    Article  PubMed  CAS  Google Scholar 

  • Mohamed R (2006). Expression and function of Populus homologs to TERMINAL FLOWER1 genes: roles in onset of flowering and shoot phenology. PhD dissertation, Oregon State University, Corvallis, OR

    Google Scholar 

  • Mølmann JA, Asante DKA, Jensen JB, Krane MN, Ernstsen A, Junttila O, Olsen JE (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation, but not dormancy in PHYA overexpressors and wild-type of hydrid aspen. Plant Cell Environ 28:1579–1588

    Article  Google Scholar 

  • Moss GI (1969) Influence of temperature and photoperiod on flower induction and inflorescence development in sweet orange – (Citrus Sinensis L Osbeck). J Hort Sci Biotech 44(4):311–320

    Google Scholar 

  • Mouhu K, Hytönen T, Folta K, Rantanen M, Paulin L, Auvinen P, Elomaa P (2009) Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biol 9:122. doi:10.1186/1471-2229-9-122

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58(14):3915–3927

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Noh YS (2006) Chromatin-mediated regulation of flowering time in Arabidopsis. Physiol Plant 126(4):484–493

    CAS  Google Scholar 

  • Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci 101:8039–8044

    Article  PubMed  Google Scholar 

  • Nozue K, Maloof J (2006) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE (2006) Mechanisms of dormancy regulation. Acta Hortic 727:157–165

    CAS  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12(6):1339–1350

    Article  CAS  Google Scholar 

  • Or E (2009) Grape bud dormancy release-the molecular aspect. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer Science and Business Media B.V. doi 10.1007/978-90-481-2305-6_1.

    Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43(4):483–494

    Article  PubMed  CAS  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  PubMed  CAS  Google Scholar 

  • Pineiro M, Gomez-Mena C, Schaffer R, Martinez-Zapater JM, Coupland G (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 15(7):1552–1562

    Article  PubMed  CAS  Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grapes – A Review. Am J Enol Vitic 22(2):92–109

    Google Scholar 

  • Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA 102(19):7037–7042

    Article  PubMed  CAS  Google Scholar 

  • Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL (2009) REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA 106:16883–16888

    Article  PubMed  CAS  Google Scholar 

  • Robertson FC, Skeffington AW, Gardner MJ, Webb AAR (2008) Interactions between circadian and hormonal signaling in plants. Plant Mol Biol 69:419–427

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Alquezar B (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57(3):633–643

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Falcón M, Bou J, Prat S (2006) Seasonal control of tuberization in potato: conserved elements with the flowering response. Annu Rev Plant Biol 57:151–180

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Kangasjarvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    Article  PubMed  CAS  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390

    Article  PubMed  CAS  Google Scholar 

  • Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006) FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol 6:10. doi:10.1186/1471-2229-6-10

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. J Plant Biol 8:483–486

    Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  PubMed  CAS  Google Scholar 

  • Schnabel BJ, Wample RL (1987) Dormancy and cold hardiness in Vitis-Vinifera L Cv White Riesling as influenced by photoperiod and temperature. Am J Enol Vitic 38(4):265–272

    Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodeling of the transcriptome. Plant J 40:173–187

    Article  PubMed  CAS  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Gene Dev 20:898–912

    Article  PubMed  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Smithberg MH, Weiser CJ (1968) Patterns of variation among climatic races of red-osier dogwood. Ecology 49(3):495–505

    Article  Google Scholar 

  • Sonnewald U (2001) Control of potato tuber sprouting. Trends Plant Sci 6(8):333–335

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:102–108

    Article  CAS  Google Scholar 

  • Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38(6):706–710

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (1998) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118(3):843–848

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (2004) Physiological regulation of potato tuber dormancy. Am J Potato Res 81:253–262

    Article  CAS  Google Scholar 

  • Suttle JC (2008) Effects of synthetic phenylurea and nitroguanidine cytokinins on dormancy break and sprout growth in russet burbank minitubers. Am J Potato Res 85:121–128

    Article  CAS  Google Scholar 

  • Svendsen E, Wilen R, Stevenson R, Liu R, Tanino KK (2007) A molecular marker associated with low-temperature induction of dormancy in red osier dogwood (Cornus sericea). Tree Physiol 27(3):385–397

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15(12):2856–2865

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  PubMed  CAS  Google Scholar 

  • Volaire F, Norton M (2006) Summer dormancy in perennial temperate grasses. Ann Bot 98:927–933

    Article  PubMed  Google Scholar 

  • Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiol Plant 109:203–210

    Article  CAS  Google Scholar 

  • Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol Plant 100:119–125

    Article  CAS  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133(5):708–716

    Google Scholar 

  • Yuceer C, Land SB Jr, Kubiske ME, Harkess RL (2003) Shoot morphogenesis associated with flowering in Populus deltoides (Salicaceae). Am J Bot 90:196–206

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Cetin Yuceer for providing the poplar pictures used in Fig. 5.1. The first and second authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, J.V., Horvath, D.P., Chao, W.S., Foley, M.E. (2010). Bud Dormancy in Perennial Plants: A Mechanism for Survival. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_5

Download citation

Publish with us

Policies and ethics