Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 294))

  • 969 Accesses

Abstract

This chapter starts with an overview on computation techniques aiming to solve nonlinear optimization problems with emphasis on evolutionary optimization algorithms and discusses their relevance to analog design problem. The main virtues and weaknesses, as well as, the design issues of evolutionary algorithms are discussed with a description of the recent developments in this field. This chapter also introduces a new optimization kernel based on genetic algorithms applied to analog circuit optimization. It includes a detailed description of the coding schemes, the fitness function, the genetic operators and other design strategy criteria. Finally, a robust IC design methodology supported by the optimization kernel is presented in the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of analog cells. In: Proc. ACM/IEEE Int. Conf. Computer-Aided Design, pp. 594–597 (1994)

    Google Scholar 

  2. Nye, W., Riley, D.C., Sangiovanni-Vincentelli, A., Tits, A.L.: DELIGHT.SPICE: An optimization-based system for the design of integrated circuits. IEEE Trans. Computer-Aided Design 7(4), 501–519 (1998)

    Article  Google Scholar 

  3. Michalewicz, Z.: Evolutionary computation techniques for nonlinear programming problems. International Transactions in Operational Research 1(2), 223–240 (1994)

    Article  MATH  Google Scholar 

  4. Zitzler, E.: Evolutionary algorithms for multi-objective optimization: Methods and applications. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich (1999)

    Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms for multi-objective optimization. In: Proc. Congress on Evolutionary Computation, vol. 3(1), pp. 1–16 (1998)

    Google Scholar 

  6. NEOS Guide, Optimization Technology Center, Department of Energy, Northwestern University (2005), http://www.ece.northwestern.edu/OTC (Accessed March 2009)

  7. Dantzig, G.B.: Linear programming and extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  8. Beasley, J.E.: Advances in linear and integer programming. Oxford Science Publications, Oxford (1996)

    MATH  Google Scholar 

  9. Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific,Belmont (1998)

    Google Scholar 

  10. Constraint programming, Artificial intelligence applications institute. The University of Edinburgh (2007), http://www.aiai.ed.ac.uk/ (Accessed March 2009)

  11. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  12. Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. In: Proc. GECCO, pp. 225–232 (2005)

    Google Scholar 

  14. Mahfoud, S.W., Goldberg, D.E.: Parallel recombinative simulated annealing: A genetic algorithm. Parallel Computing 21, 1–28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  16. Kirkpatrick, S., Gerlatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science (1983), doi: 10.1126/science.220.4598.671

    Google Scholar 

  17. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. dissertation, Vanderbilt University, Nashville, TN (1984)

    Google Scholar 

  18. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multi-objective optimization: Formulation. Discussion and Generalization. In: Proc. 5th International Conference on Genetic Algorithms, pp. 141–153 (1993)

    Google Scholar 

  19. Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple constraints handling with evolutionary algorithms–Part II: Application example. IEEE Trans. Systems, Man, and Cybernetics: Part A: Systems and Humans, 38–47 (1998)

    Google Scholar 

  20. Fonseca, C.: Multiobjective genetic algorithm with application to control engineering problems, Ph.D. Thesis, The University of Sheffield (1995)

    Google Scholar 

  21. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  22. Horn, J., Nafploitis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multi-objective optimization. In: Proc. 1st IEEE Conference on Evolutionary Computation, pp. 82–87 (1994)

    Google Scholar 

  23. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  24. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  25. Michalewicz, Z.: Genetic algorithms + data structure = evolution programs, 3rd edn. Springer, Berlin (1996)

    Google Scholar 

  26. Cantu-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. IEEE Trans. Evolutionary Computation 7, 429–449 (1999)

    Google Scholar 

  27. Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and structural design: A survey of the state of the art. Computers & Structures 83(23), 1943–1978 (2005)

    Article  Google Scholar 

  28. Zilouchian, A., Jamshidi, M.: Intelligent control systems using soft computing methodologies. CRC Press LLC (2001)

    Google Scholar 

  29. Liang, J., McConaghy, T., Kochlan, A., Pham, T., Hertz, G.: Intelligent systems for analog circuit design automation: A survey (2001), http://archived.techonline.com/ (Accessed March 2009)

  30. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  31. Back, T., Hoffmcister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proc. 4th Int. Conf. on Genetic Algorithms, pp. 2–9 (1991)

    Google Scholar 

  32. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution. Wiley, Chichester (1966)

    MATH  Google Scholar 

  33. Fogel, D.B.: Evolutionary computation: Towards a new philosophy of machine intelligence. IEEE Press, New York (2000)

    Google Scholar 

  34. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  35. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic programming IV: Routine human-competitive machine intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  36. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (1998)

    MATH  Google Scholar 

  37. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics-Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  38. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  39. Ocenasek, J.: Parallel estimation of distribution algorithms. Ph.D. dissertation, Faculty of Information Technology, Brno University of Technology (2002)

    Google Scholar 

  40. Larrañaga, P., Lozano, J.A.: Optimization by learning and simulation of probabilistic graphical models. In: Parallel Problem Solving from Nature, PPSN VII (2002), http://www.sc.ehu.es/ccwbayes/ (Accessed March 2009)

  41. Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: A new tool for evolutionary computation. Kluwer Academic Publishers, Norwell (2001)

    Google Scholar 

  42. Price, K., Storn, R.: Differential evolution - a simple and efficient heuristic strategy for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Reynolds, R.G.: An introduction to cultural algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proc. 3rd Annual Conference on Evolutionary Programming, pp. 131–139 (1994)

    Google Scholar 

  44. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826 (1989)

    Google Scholar 

  45. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: Model, taxonomy and design issues. IEEE Trans. Evolutionary Computation 9(5), 474–488 (2005)

    Article  Google Scholar 

  46. Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special Issue on Memetic Algorithms. IEEE Trans. Systems, Man and Cybernetics - Part B 37(1) (2007)

    Google Scholar 

  47. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Knowledge Incorporation in Evolutionary Computation, pp. 307–332. Springer, Heidelberg (2004)

    Google Scholar 

  48. Bosman, P.A., Thierens, D.: Exploiting gradient information in continuous iterated density estimation evolutionary algorithms. Tech. Rep. UU-CS-2001-53, Universiteit Utrecht (2001)

    Google Scholar 

  49. Mezura-Montes, E., Coello, C.A.C.: Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems. In: Proc. Congress on Evolutionary Computation, vol. 1, pp. 6–13 (2003)

    Google Scholar 

  50. Streichert, F., Stein, G., Ulmer, H., Zell, A.: A Clustering based niching EA for multimodal search spaces. In: Proc. 6th International Conference Evolution Artificielle, pp. 169–180 (2003)

    Google Scholar 

  51. Kim, J.K., Cho, D.H., Jung, H.K., Lee, C.G.: Niching genetic algorithm adopting restricted competition selection combined with pattern search method. IEEE Trans. Magnetics 38(2), 1001–1004 (2002)

    Article  Google Scholar 

  52. Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for multi-objective optimization. In: Proc. Congress on Evolutionary Computation, pp. 98–105. IEEE Service Center, New Jersey (1999)

    Google Scholar 

  53. Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-objective genetic algorithms: Performance comparison and performance measures. In: Proc. Congress on Evolutionary Computation, pp. 1143–1150 (2006)

    Google Scholar 

  54. Mezura-Montes, E., Coello, C.A.: Multiobjective-Based Concepts to Handle Constraints in Evolutionary Algorithms. In: Proc. 4th Mexican International Conference on Computer Science, pp. 192–199 (2003)

    Google Scholar 

  55. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing Journal 9(1), 3–12 (2005)

    Article  Google Scholar 

  56. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford University Press, Oxford (1997)

    Book  MATH  Google Scholar 

  57. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  58. Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., et al.: open MPI: Goals, concept, and design of a next generation MPI implementation. In: Proc. 11th European PVM/MPI Users’ Group Meeting, Hungary (2004)

    Google Scholar 

  59. Andersson, J.: A survey of multiobjective optimization in engineering design. Tech. Rep. No. LiTH-IKP-R-1097, Dept. of Mechanical Engineering, Linköping University (2000)

    Google Scholar 

  60. Andersson, J.: Multiobjective optimization in engineering design applications to fluid power systems, Ph.D. Thesis no 675, Linköping University, Linköping (2001)

    Google Scholar 

  61. Messac, A., Sundararaj, G.J., Tappeta, R.V., Renaud, J.E.: The ability of objective functions to generate non-convex pareto frontiers. American Institute of Aeronautics and Astronautics Journal 38(3), 1084–1091 (2000)

    Google Scholar 

  62. Messac, A.: Physical programming: Effective optimization for computational design. American Institute of Aeronautics and Astronautics Journal 34(1), 149–158 (1996)

    MATH  Google Scholar 

  63. Messac, A., Wilson, B.: Physical programming for computational control. American Institute of Aeronautics and Astronautics Journal 36(2), 219–226 (1998)

    MATH  Google Scholar 

  64. Michalewicz, Z., Michalewicz, M.: Evolutionary computation techniques and their applications. In: Proc. IEEE International Conference on Intelligent Processing Systems, vol. 1, pp. 14–25 (1997)

    Google Scholar 

  65. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algorithms. IEEE Trans. Evolutionary Computation 8(4), 405–421 (2004)

    Article  Google Scholar 

  66. McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  67. Antony, J., Somasundarum, V., Fergusson, C.: Applications of taguchi approach to statistical design of experiments in Czech Republican industries. International Journal of Productivity and Performance Management 53(5), 447–457 (2004)

    Article  Google Scholar 

  68. Trygg, J., Wold, S.: Introduction to statistical experimental design. Editorial (2002), http://www.acc.umu.se/~tnkjtg/Chemometrics/Editorial (Accessed March 2009)

  69. Barros, M., Neves, G., Guilherme, J., Horta, N.C.: A distributed enhanced genetic algorithm kernel applied to a circuit/level optimization E-Design environment. In: Proc. Design of Circuits and Integrated Systems, pp. 20–24 (2004)

    Google Scholar 

  70. MPI, The message passing interface (MPI) Standard (1995), http://www-unix.mcs.anl.gov/mpi/index.htm (Accessed March 2009)

  71. LAM/MPI, LAM/MPI parallel computing (2007), http://www.lam-mpi.org (Accessed March 2009)

  72. MPI Primer/Developing with LAM, Ohio Supercomputer Center, http://parallel.ksu.ru/ftp/mpi/LAM/lam61.doc.pdf.gz (Accessed March 2009)

  73. Open MPI, Open MPI: Open source high performance computing (2007), http://www.open-mpi.org (Accessed March 2009)

  74. Zhang, L., Kleine, U.: A novel analog layout synthesis tool. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 5, pp. 101–104 (2004)

    Google Scholar 

  75. Chang, C., Lin, C.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm (Accessed March 2009)

  76. Martin, K., Johns, D.: Analog integrated circuit design. John Wiley & Sons Inc., Chichester (1996)

    Google Scholar 

  77. Barros, M., Neves, G., Horta, N.C.: AIDA: Analog IC design automation based on a fully configurable design hierarchy and flow. In: Proc. 13th IEEE International Conf. on Electronics, Circuits and Systems, pp. 490–493 (2006)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barros, M.F.M., Guilherme, J.M.C., Horta, N.C.G. (2010). Evolutionary Analog IC Design Optimization. In: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques. Studies in Computational Intelligence, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12346-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12346-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12345-0

  • Online ISBN: 978-3-642-12346-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics