Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 294))

  • 962 Accesses

Abstract

This chapter presents the motivation to the research work in the area of analog integrated circuit (IC) design automation, i.e., outlines the market and technological evolution, characterizes the analog IC design, discusses the available CAD solutions and, finally, describes goals for the this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leenaerts, D., Gielen, G., Rutenbar, R.A.: CAD solutions and outstanding challenges for mixed-signal and RF IC design. In: Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 270–277 (2001)

    Google Scholar 

  2. Gielen, G.: Modeling and analysis techniques for system-level architectural design of telecom front-ends. IEEE Trans. Microwave Theory and Techniques 50, 360–368 (2002)

    Article  Google Scholar 

  3. Lev, L., Razdan, R., Tice, C.: It’s about time – Charting a course for unified verification. EETimes eeDesign News (2000), http://www.eetimes.com (Accessed March 2009)

  4. Horta, N.C.: Analog and mixed-Signal IC design automation: Synthesis and optimization overview. In: Proc. 5th Conference on Telecommunications, Tomar, Portugal (2005)

    Google Scholar 

  5. Hasting, A.: The Art of Analog Layout. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  6. Gielen, G., Rutenbar, R.A.: Computer-aided design of analog and mixed-signal integrated circuits. IEEE Proceedings 88(12), 1825–1854 (2000)

    Article  Google Scholar 

  7. Sommer, R., Malcovati, P., Maloberti, F., Schwarz, P., Noessing, G., et al.: From system specification to layout: Seamless top-down design methods for analog and mixed-signal applications. In: Proc. Design Automation and Test in Europe Conference and Exhibition, pp. 884–891 (2002)

    Google Scholar 

  8. Chang, H., Sangiovanni-Vincentelli, A., et al.: A top-down, constraint-driven design methodology for analog integrated circuits. In: Proc. IEEE Custom Integrated Circuits Conference, pp. 841–846 (1992)

    Google Scholar 

  9. Toumazou, C., Makris, C.: Analog IC design automation: Part I - Automated circuit generation: New concepts and methods. IEEE Trans. Computer-Aided Design 14, 218–238 (1995)

    Article  Google Scholar 

  10. Donnay, S., et al.: Using top–down CAD tools for mixed analog/digital Asics: A practical design case. Kluwer Int. J. Analog Integrated Circuits Signal Processing 10, 101–117 (1996)

    Article  Google Scholar 

  11. Guilherme, J.: Architectures for high dynamic range CMOS pipelining analog to digital signal conversion. PhD dissertation, Dept. Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal (2003)

    Google Scholar 

  12. Castro-Lopez, R., Fernandez, F.V., Guerra-Vinuesa, O., Vazquez, A.: Reuse Based Methodologies and Tools in the Design of Analog and Mixed-Signal Integrated Circuits. Springer, Heidelberg (2003)

    Google Scholar 

  13. Liu, D.: A Framework for Designing Reusable Analog Circuits. PhD dissertation. Stanford University, Stanford (2003)

    Google Scholar 

  14. Dastidar, T.R., Chakrabarti, P.P., Ray, P.: A synthesis system for analog circuits based on evolutionary search and topological reuse. IEEE Trans. Evolutionary Computation 9(2), 211–224 (2005)

    Article  Google Scholar 

  15. Gielen, G.: CAD tools for embedded analogue circuits in mixed signal integrated systems on chip. In: IEE Proc. Computers and Digital Technique, vol. 152(3), pp. 317–332 (2005)

    Google Scholar 

  16. Chang, H., Malavasi, E., Sangiovanni-Vincentelli, A., Gray, P.R., et al.: A top-down, constraint driven design based generation of nbit interpolative current source D/A converters. In: Proc. IEEE Custom Integrated Circuits Conference, pp. 369–372 (1994)

    Google Scholar 

  17. MATLAB, The language of technical computing. The MathWorks Inc. (1996)

    Google Scholar 

  18. Cadence Inc, SPECTRE simulator and other cadence products (2009), http://www.cadence.com/products (Accessed March 2009)

  19. Synopsys Inc, Products and solutions-HSIM, PowerMill, NanoSim (2009), http://www.synopsys.com (Accessed March 2009)

  20. VHDL, IEEE standard VHDL language reference manual. IEEE Std 1076-2000 (2000)

    Google Scholar 

  21. VHDL-ALS: IEEE standard VHDL analog and mixed-signal extensions reference manual. IEEE Std 1076.1 (2000)

    Google Scholar 

  22. Cadence Inc, Products: Composer, Virtuoso, DIVA, NeoCircuit, NeoCell, UltraSim, NcSim (2009), http://www.cadence.com (Accessed March 2009)

  23. Mentor Graphics Corp, Products: Calibre (2009), http://www.mentor.com/products (Accessed March 2009)

  24. Synopsys Inc, HSPICE simulator (2009), http://www.synopsys.com/products/mixedsignal (Accessed March 2009)

  25. El-Turky, F., Perry, E.: BLADES: An artificial intelligence approach to analog circuit design. IEEE Trans. Computer Aided Design 8, 680–692 (1989)

    Article  Google Scholar 

  26. Harjani, R., Shao, J.: Feasibility and performance region modeling of analog and digital circuits. Kluwer Int. J. Analog Integrated Circuits Signal Processing 10, 23–43 (1996)

    Article  Google Scholar 

  27. Stehr, G., Graeb, H., Antreich, K.: Performance trade-off analysis of analog circuits by normal-boundary intersection. In: Proc. Design Automation Conference, pp. 958–963 (2003)

    Google Scholar 

  28. Smedt, B., Gielen, G.: WATSON: Design space boundary exploration and model generation for analog and RFIC design. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 22(2), 213–224 (2003)

    Article  Google Scholar 

  29. Smedt, B., Gielen, G.: HOLMES: Capturing the yield-optimized design space boundaries of analog and RF integrated circuits. In: Proc. of Design Automation and Test in Europe Conference and Exhibition, pp. 256–261 (2003)

    Google Scholar 

  30. Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS opamp synthesis by means of a genetic algorithm. In: Proc. ACM/IEEE Design Automation Conference, pp. 550–553 (1995)

    Google Scholar 

  31. SPICE3 Berkerley, SPICE3 reference manual. University of Cincinnati (1993)

    Google Scholar 

  32. Hjalmarson, E.: Studies on design automation of analog circuits – the design flow. PhD dissertation, Institute of Technology, Linköpings University (2003)

    Google Scholar 

  33. Degrauwe, M., et al.: IDAC: An interactive design tool for analog CMOS circuits. IEEE J. Solid-State Circuits 22, 1106–1115 (1987)

    Article  Google Scholar 

  34. Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, L.R., Hellums, J.: ANACONDA: Simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 19(6), 703–717 (2000)

    Article  Google Scholar 

  35. Krasnicki, M., Phelps, R., Rutenbar, R.A., Carley, L.R.: MAELSTROM: Efficient simulation-based synthesis for custom analog cells. In: Proc. ACM/IEEE Design Automation Conference, pp. 945–950 (1999)

    Google Scholar 

  36. Medeiro, F., et al.: A Statistical optimization-based approach for automated sizing of analog cells. In: Proc. ACM/IEEE Int. Conf. Computer Aided Design, pp. 594–597 (1994)

    Google Scholar 

  37. Gielen, G., et al.: An analog module generator for mixed analog/digital ASIC design. Wiley Int. J. Circuit Theory Applications 23, 269–283 (1995)

    Article  Google Scholar 

  38. Hershenson, M., Boyd, S., Lee, T.: GPCAD: A tool for CMOS op-amp synthesis. In: Proc. IEEE/ACM Int. Conf. Computer-Aided Design, pp. 296–303 (1998)

    Google Scholar 

  39. Hershenson, M.M., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS Op-Amp via geometric programming. IEEE Trans. Computer-Aided Design 20(1), 1–21 (2001)

    Article  Google Scholar 

  40. Horta, N.C., Franca, J.E.: High-Level data conversion synthesis by symbolic methods. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 4, pp. 802–805 (1996)

    Google Scholar 

  41. Horta, N.C.: Analogue and mixed-signal systems topologies exploration using symbolic methods. In: Proc. Analog Integrated Circuits and Signal Processing, vol. 31(2), pp. 161–176 (2002)

    Google Scholar 

  42. Rijmenants, I., Schwarz, Y.R., Litsios, J.B., Zinszner, R.: ILAC: An automated layout tool for CMOS circuits. IEEE Journal of Solid-State Circuits 24(2), 417–425 (1989)

    Article  Google Scholar 

  43. Cohn, J., Garrod, D., Rutenbar, R.A., Carley, L.R.: KOAN/ANAGRAM II: New tools for device-level analog placement and routing. IEEE J. Solid-State Circuits 26, 330–342 (1991)

    Article  Google Scholar 

  44. Carley, L., Georges, G., Rutenbar, R.A., Sansen, W.: Synthesis tools for mixed-signal ICs: Progress on frontend and backend strategies. In: Proc. Design Automation Conference, vol. 33, pp. 298–303 (1996)

    Google Scholar 

  45. Cory, W.: Layla: A VLSI Layout Language. In: Proc. 22nd ACM/IEEE Conference on Design Automation, pp. 245–251 (1985)

    Google Scholar 

  46. Zhang, L., Kleine, U.: A novel analog layout synthesis tool. In: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 5, pp. 101–104 (2004)

    Google Scholar 

  47. Lourenço, N., Horta, N.C.: LAYGEN – An evolutionary approach to automatic analog IC layout generation. In: Proc. IEEE Conf. on Electronics, Circuits and System, Tunisia (2005)

    Google Scholar 

  48. Lourenço, N., Vianello, M., Guilherme, J., Horta, N.C.: LAYGEN – Automatic layout generation of analog ICs from hierarchical template descriptions. In: Proc. IEEE Ph. D. Research in Microelectronics and Electronics, pp. 213–216 (2006)

    Google Scholar 

  49. Cadence Inc. Products: Composer, Virtuoso, DIVA, NeoCircuit, NeoCell, UltraSim, NcSim (2009), http://www.cadence.com (Accessed March 2009)

  50. Barros, M., Guilherme, J., Horta, N.C.: Analog circuits optimization based on evolutionary computation techniques. Integration, the VLSI Journal, 136–155 (2010)

    Google Scholar 

  51. Barros, M., Guilherme, J., Horta, N.C.: Analog circuits and systems optimization based on evolutionary computation techniques. In: Proc. Xth Int. Workshop Symbolic & Numerical Methods, Modeling and Application to Circuit Design, pp. 68–73 (2008)

    Google Scholar 

  52. Barros, M., Guilherme, J., Horta, N.C.: An evolutionary optimization kernel using a dynamic GA-SVM model applied to analog IC design. In: Proc. 18th European Conference on Circuit Theory and Design, vol. 1, pp. 33–35 (2007)

    Google Scholar 

  53. Barros, M., Guilherme, J., Horta, N.C.: GA-SVM feasibility model and optimization kernel applied to analog IC design automation. In: Proc. 17th ACM Great Lakes Symposium on VLSI, pp. 469–472 (2007)

    Google Scholar 

  54. Barros, M., Guilherme, J., Horta, N.C.: GA-SVM optimization kernel applied to analog IC design automation. In: Proc. 13th IEEE International Conf. on Electronics, Circuits and Systems, pp. 486–489 (2006)

    Google Scholar 

  55. Barros, M., Neves, G., Horta, N.C.: AIDA: Analog IC design automation based on a fully configurable design hierarchy and flow. In: Proc. 13th IEEE International Conf. on Electronics, Circuits and Systems, pp. 490–493 (2006)

    Google Scholar 

  56. Barros, M., Neves, G., Guilherme, J., Horta, N.C.: An evolutionary optimization approach applied to analog circuit design. Poster presented at the 5th Conference on Telecommunications, Tomar, Portugal (2005)

    Google Scholar 

  57. Barros, M., Guilherme, J., Horta, N.C.: An evolutionary optimization kernel with adaptive parameters applied to analog circuit design. In: Proc. International Symposium on Signals, Circuits and Systems, vol. 2, pp. 545–548 (2005)

    Google Scholar 

  58. Barros, M., Guilherme, J., Horta, N.C.: GENOM2: An enhanced evolutionary approach to automatic synthesis matching designers methodology. In: 3rd Ph.D. forum at the Design, Automation and Test in Europe Conference, Munich, Germany (2005)

    Google Scholar 

  59. Barros, M., Neves, G., Guilherme, J., Horta, N.C.: A distributed enhanced genetic algorithm kernel applied to a circuit/level optimization E-Design environment. In: Proc. Design of Circuits and Integrated Systems, pp. 20–24 (2004)

    Google Scholar 

  60. Barros, M., Neves, G., Guilherme, J., Horta, N.C.: Enhanced genetic algorithm kernel applied to a circuit-level optimization E-Design environment. In: Proc. 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 1046–1049 (2003)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barros, M.F.M., Guilherme, J.M.C., Horta, N.C.G. (2010). Introduction. In: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques. Studies in Computational Intelligence, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12346-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12346-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12345-0

  • Online ISBN: 978-3-642-12346-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics