Skip to main content

Mechanisms and Evolution of Dorsal–Ventral Patterning

  • Chapter
  • First Online:
Evolutionary Biology – Concepts, Molecular and Morphological Evolution

Abstract

In the last two decades, a great progress has been made with the discovery and understanding of conserved signaling pathways, in particular those involved in embryonic dorsal–ventral patterning and the organization of the nervous system. Remarkably, the spatial distribution of these signal molecules appears conserved across a large group of animals that have centralized nervous systems. Despite these achievements, there are still many unanswered questions on how the nervous system organization evolves and responds to variations in organism size. In this review, we discuss the progression of the field from early observations made more than a century ago and introduce future challenges regarding the problem of scaling of the nervous system during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt D, Nubler-Jung K (1994) Inversion of dorsoventral axis? Nature 371:26

    Article  PubMed  CAS  Google Scholar 

  • Arendt D, Denes AS, Jekely G, Tessmar-Raible K (2008) The evolution of nervous system centralization. Philos Trans R Soc Lond B Biol Sci 363:1523–1528

    Article  PubMed  Google Scholar 

  • Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N (2008) Scaling of the BMP activation gradient in Xenopus embryos. Nature 26:1205–1211

    Article  Google Scholar 

  • Bhat KM (1999) Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21:472–485

    Article  PubMed  CAS  Google Scholar 

  • Biehs B, Francois V, Bier E (1996) The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev 10:2922–2934

    Article  PubMed  CAS  Google Scholar 

  • Bier E (1997) Anti-neural-inhibition: a conserved mechanism for neural induction. Cell 89:681–684

    Article  PubMed  CAS  Google Scholar 

  • Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA (2006) Two Dobzhansky–Muller genes interact to cause hybrid lethality in Drosophila. Science 314:1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Handel K, Roth S (2000) The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127:5145–5156

    PubMed  CAS  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Cowden J, Levine M (2003) Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo. Dev Biol 262:335–349

    Article  PubMed  CAS  Google Scholar 

  • Crocker J, Tamori Y, Erives A (2008) Evolution acts on enhancer organization to fine-tune gradient threshold readouts. PLoS Biol 6:e263

    Article  PubMed  Google Scholar 

  • De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132:185–195

    Article  PubMed  Google Scholar 

  • De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40

    Article  PubMed  Google Scholar 

  • DeLotto R, DeLotto Y, Steward R, Lippincott-Schwartz J (2007) Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear dorsal levels during Drosophila embryogenesis. Development 134:4233–4241

    Article  PubMed  CAS  Google Scholar 

  • Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129:277–288

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:855–863

    PubMed  CAS  Google Scholar 

  • Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ, Skeath JB (1996) Neurogenesis in the insect central nervous system. Curr Opin Neurobiol 6:18–24

    Article  PubMed  CAS  Google Scholar 

  • Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419:304–308

    Article  PubMed  CAS  Google Scholar 

  • Ferguson EL (1996) Conservation of dorsal–ventral patterning in arthropods and chordates. Curr Opin Genet Dev 6:424–431

    Article  PubMed  CAS  Google Scholar 

  • Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  PubMed  CAS  Google Scholar 

  • Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal–ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8:2602–2616

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy St.-Hilaire E (1822) Considérations générales sur la vertèbre. Mém Mus Hist Nat 9:89–119

    Google Scholar 

  • Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487

    Article  PubMed  CAS  Google Scholar 

  • Gregor T, Bialek W, de Ruyter van Steveninck RR, Tank DW, Wieschaus EF (2005) Diffusion and scaling during early embryonic pattern formation. Proc Natl Acad Sci USA 102:18403–18407

    Article  PubMed  CAS  Google Scholar 

  • Gregor T, McGregor AP, Wieschaus EF (2008) Shape and function of the bicoid morphogen gradient in dipteran species with different sized embryos. Dev Biol 316:350–358

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ (2009) Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 10:736–746

    Article  PubMed  CAS  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376:249–253

    Article  PubMed  CAS  Google Scholar 

  • Horton IH (1939) A comparison of the salivary gland chromosomes of Drosophila melanogaster and D. simulans. Genetics 24:234–243

    PubMed  CAS  Google Scholar 

  • Illes JC, Winterbottom E, Isaacs HV (2009) Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. Dev Dyn 238:194–203

    Article  PubMed  CAS  Google Scholar 

  • Irish VF, Gelbart WM (1987) The decapentaplegic gene is required for dorsal–ventral patterning of the Drosophila embryo. Genes Dev 1:868–879

    Article  PubMed  CAS  Google Scholar 

  • Isshiki T, Takeichi M, Nose A (1997) The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development 124:3099–3109

    PubMed  CAS  Google Scholar 

  • Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO Rep 4:761–765

    Article  PubMed  CAS  Google Scholar 

  • Jimenez F, Martin-Morris LE, Velasco L, Chu H, Sierra J, Rosen DR, White K (1995) vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J 14:3487–3495

    PubMed  CAS  Google Scholar 

  • Kanodia JS, Rikhy R, Kim Y, Lund VK, DelottoR Lippincott-Schwartz J, Shvartsman SY (2009) Dynamics of the dorsal morphogen gradient. Proc Natl Acad Sci USA 106:21707–21712

    Article  PubMed  CAS  Google Scholar 

  • Kassis JA (1990) Spatial and temporal control elements of the Drosophila engrailed gene. Genes Dev 4:433–443

    Article  PubMed  CAS  Google Scholar 

  • Katz PS, Harris-Warrick RM (1999) The evolution of neuronal circuits underlying species-specific behavior. Curr Opin Neurobiol 9:628–633

    Article  PubMed  CAS  Google Scholar 

  • Keranen SV, Fowlkes CC, Luengo Hendriks CL, Sudar D, Knowles DW, Malik J, Biggin MD (2006) Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics. Genome Biol 7:R124

    Article  PubMed  Google Scholar 

  • Konrad KD, Goralski TJ, Mahowald AP (1988) Developmental genetics of the gastrulation defective locus in Drosophila melanogaster. Dev Biol 127:133–142

    Article  PubMed  CAS  Google Scholar 

  • Kriks S, Lanuza GM, Mizuguchi R, Nakafuku M, Goulding M (2005) Gsh2 is required for the repression of Ngn1 and specification of dorsal interneuron fate in the spinal cord. Development 132:2991–3002

    Article  PubMed  CAS  Google Scholar 

  • Lachaise D, David JR, Lemeunier F, Tsacas L, Ashburner M (1986) The reproductive relationship of Drosophila sechellia with Drosophila mauritiana, Drosophila simulans and Drosophila melanogaster from the afro-tropical region. Evolution 40:262–271

    Article  Google Scholar 

  • Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal–ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7:e1000248

    Article  PubMed  Google Scholar 

  • Lemeunier F, Ashburner M (1984) Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). Chromosoma 89:343–351

    Article  Google Scholar 

  • Liberman LM, Stathopoulos A (2009) Design flexibility in cis-regulatory control of gene expression: synthetic and comparative evidence. Dev Biol 327:578–589

    Article  PubMed  CAS  Google Scholar 

  • Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    Article  PubMed  CAS  Google Scholar 

  • Liem KF Jr, Jessell TM, Briscoe J (2000) Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127:4855–4866

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3:979–985

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Helms AW, Johnson JE (2004) Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 131:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Lott SE, Kreitman M, Palsson A, Alekseeva E, Ludwig MZ (2007) Canalization of segmentation and its evolution in Drosophila. Proc Natl Acad Sci USA 104:10926–10931

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Freeman RM Jr, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C et al (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291

    Article  PubMed  Google Scholar 

  • Ludwig MZ, Patel NH, Kreitman M (1998) Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development 125:949–958

    PubMed  CAS  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  PubMed  Google Scholar 

  • McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci USA 104:4996–5001

    Article  PubMed  CAS  Google Scholar 

  • McDonald JA, Holbrook S, Isshiki T, Weiss J, Doe CQ, Mellerick DM (1998) Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev 12:3603–3612

    Article  PubMed  CAS  Google Scholar 

  • McGregor AP, Shaw PJ, Hancock JM, Bopp D, Hediger M, Wratten NS, Dover GA (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 3:397–407

    Article  PubMed  CAS  Google Scholar 

  • Mellerick DM, Modica V (2002) Regulated vnd expression is required for both neural and glial specification in Drosophila. J Neurobiol 50:118–136

    Article  PubMed  CAS  Google Scholar 

  • Mizutani C, Bier E (2008) EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 9:663–677

    Article  PubMed  CAS  Google Scholar 

  • Mizutani CM, Nie Q, Wan FY, Zhang YT, Vilmos P, Sousa-Neves R, Bier E, Marsh JL, Lander AD (2005) Formation of the BMP activity gradient in the Drosophila embryo. Dev Cell 8:915–924

    Article  PubMed  CAS  Google Scholar 

  • Mizutani CM, Meyer N, Roelink H, Bier E (2006) Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biol 4:e313

    Article  PubMed  Google Scholar 

  • Nomaksteinsky M, Rottinger E, Dufour HD, Chettouh Z, Lowe CJ, Martindale MQ, Brunet JF (2009) Centralization of the deuterostome nervous system predates chordates. Curr Biol 19:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Nunes da Fonseca R, von Levetzow C, Kalscheuer P, Basal A, van der Zee M, Roth S (2008) Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev Cell 14:605–615

    Article  PubMed  CAS  Google Scholar 

  • Orgogozo V, Muro NM, Stern DL (2007) Variation in fiber number of a male-specific muscle between Drosophila species: a genetic and developmental analysis. Evol Dev 9:368–377

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, St Johnston RD, Gelbart WM (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325:81–84

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, Wozney JM, Gelbart WM (1993) Human BMP sequences can confer normal dorsal–ventral patterning in the Drosophila embryo. Proc Natl Acad Sci USA 90:2905–2909

    Article  PubMed  CAS  Google Scholar 

  • Ray RP, Arora K, Nusslein-Volhard C, Gelbart WM (1991) The control of cell fate along the dorsal–ventral axis of the Drosophila embryo. Development 113:35–54

    PubMed  CAS  Google Scholar 

  • Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296:375–387

    Article  PubMed  CAS  Google Scholar 

  • Roth S, Stein D, Nusslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Rushlow CA, Han K, Manley JL, Levine M (1989) The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci USA 106:18592–18597

    Article  PubMed  CAS  Google Scholar 

  • Samuel G, Miller D, Saint R (2001) Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora. Evol Dev 3:241–250

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126:4653–4689

    PubMed  CAS  Google Scholar 

  • Schmidt J, Francois V, Bier E, Kimelman D (1995) Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal–ventral patterning. Development 121:4319–4328

    PubMed  CAS  Google Scholar 

  • Schneider DS, Hudson KL, Lin TY, Anderson KV (1991) Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal–ventral polarity in the Drosophila embryo. Genes Dev 5:797–807

    Article  PubMed  CAS  Google Scholar 

  • Sousa-Neves R, Rosas A (2010) An Analysis of Genetic Changes during the Divergence of Drosophila species. PloS One 5(5): e10485. doi:10.1371/journal.pone.0010485

    Google Scholar 

  • Spemann H, Mangold H (1924) Uber induction von embryonanlagen durch implantation artfremder organis atoren. W Roux’ Arch Ent Org 100:599–638

    Google Scholar 

  • Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal–ventral patterning in the Drosophila embryo. Cell 111:687–701

    Article  PubMed  CAS  Google Scholar 

  • Steward R (1989) Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant AH (1929) Contributions to the genetics of Drosophila simulans and Drosophila melanogaster. I. The genetics of Drosophila simulans. Publs Carnegie Instn 399:1–62

    Google Scholar 

  • Suzuki A, Ueno N, Hemmati-Brivanlou A (1997) Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124:3037–3044

    PubMed  CAS  Google Scholar 

  • Technau GM, Berger C, Urbach R (2006) Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 235:861–869

    Article  PubMed  CAS  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

    Article  PubMed  CAS  Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc Biol Sci 275:369–376

    Article  PubMed  Google Scholar 

  • Valerius MT, Li H, Stock JL, Weinstein M, Kaur S, Singh G, Potter SS (1995) Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 203:337–351

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Chen X, Xu H, Lufkin T (1996) Msx3: a novel murine homologue of the Drosophila msh homeobox gene restricted to the dorsal embryonic central nervous system. Mech Dev 58:203–215

    Article  PubMed  CAS  Google Scholar 

  • Warren DC (1924) Inheritance of Egg Size in Drosophila melanogaster. Genetics 9:41–69

    PubMed  CAS  Google Scholar 

  • Watanabe TK, Kawanishi M (1979) Mating preference and the direction of evolution in drosophila. Science 205:906–907

    Article  PubMed  CAS  Google Scholar 

  • Weiss JB, Von Ohlen T, Mellerick DM, Dressler G, Doe CQ, Scott MP (1998) Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev 12:3591–3602

    Article  PubMed  CAS  Google Scholar 

  • Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of Decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117:807–822

    PubMed  CAS  Google Scholar 

  • Wheeler SR, Carrico ML, Wilson BA, Skeath JB (2005) The Tribolium columnar genes reveal conservation and plasticity in neural precursor patterning along the embryonic dorsal–ventral axis. Dev Biol 279:491–500

    Article  PubMed  CAS  Google Scholar 

  • Whitington PM (1996) Evolution of neural development in the arthropods. Semin Cell Dev Biol 7:605–614

    Article  Google Scholar 

  • Wittkopp PJ, Vaccaro K, Carroll SB (2002) Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 12:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto MT, Kamo M, Yamamoto S, Watanable TK (1997) Cytogenetic mapping of lethal hybrid rescue gene of Drosophila simulans. Genes Genet Syst 72:297–301

    Article  CAS  Google Scholar 

  • Zinzen RP, Senger K, Levine M, Papatsenko D (2006) Computational models for neurogenic gene expression in the Drosophila embryo. Curr Biol 16:1358–1365

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Mieko Mizutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mizutani, C.M., Sousa-Neves, R. (2010). Mechanisms and Evolution of Dorsal–Ventral Patterning. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Molecular and Morphological Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12340-5_10

Download citation

Publish with us

Policies and ethics