Skip to main content

Extinct and Extant Reptiles: A Model System for the Study of Sex Chromosome Evolution

  • Chapter
  • First Online:
  • 1355 Accesses

Abstract

The evolution and functional dynamics of sex chromosomes are focuses of current biological research. Although common organismal morphologies and functions of males and females are found among amniotes, underlying sex chromosome organizations and sex-determining mechanisms are widely variable. This chapter investigates the role that reptiles play in the study of sex chromosome evolution. Reptile studies have described the coevolution of genotypic sex determination and viviparity, the adaptive significance of sex-determining mechanisms, and shared ancestry of chromosomes. Novel resources, including whole-genome sequences and mapped sex-linked markers, have allowed researchers to examine sex chromosome evolution in reptiles, an important group for this type of study for their position as the sister group to mammals. Compared with mammals, reptiles exhibit much more variability in sex chromosome organization, providing raw material for study of sex chromosome evolution across amniotes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allsop DJ, Warner DA, Langkilde T, Du W, Shine R (2006) Do operational sex ratios influence sex allocation in viviparous lizards with temperature-dependent sex determination? J Evol Biol 19(4):1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Andrews RM, Mathies T (2000) Natural history of reptilian development: constraints on the evolution of viviparity. Bioscience 50(3):227–238

    Article  Google Scholar 

  • Backström N, Brandstrom M, Gustafsson L, Qvarnstrom A, Cheng H, Ellegren H (2006) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174(1):377–386

    Article  PubMed  Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Caldwell MW, Lee MSY (2001) Live birth in Cretaceous marine lizards (mosasauroids). Proc R Soc Lond B Biol Sci 268(1484):2397–2401

    Article  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Phil Trans Roy Soc Lond B 355(1403):1563–1572

    Article  CAS  Google Scholar 

  • Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes. Am Nat 130(1):113–146

    Article  Google Scholar 

  • Charnov EL, Bull J (1977) When is sex environmentally determined. Nature 266(5605):829–830

    Article  Google Scholar 

  • Ewert BJ, Etchberger CR, Nelson CE (2004) Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 21–32

    Google Scholar 

  • Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Graves JAM (2005) The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res 13(8):763–776

    Article  PubMed  CAS  Google Scholar 

  • Ezaz T, Valenzuela N, Grutzner F, Miura I, Georges A, Burke RL, Graves JAM (2006) An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosome Res 14(2):139–150

    Article  PubMed  CAS  Google Scholar 

  • Ezaz T, Quinn AE, Sarre SD, O’Meally D, Georges A, Graves JAM (2009) Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Res 17(1):91–98

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics. Longmann Press, London, UK

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, New York, USA

    Google Scholar 

  • Freedberg S, Wade MJ (2001) Cultural inheritance as a mechanism for population sex-ratio bias in reptiles. Evolution 55(5):1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Georges A (1992) Thermal characteristics and sex determination in field nests of the pig-nosed turtle, Carettochelys insculpta (Chelonia, Carettochelydidae), from northern Australia. Aust J Zool 40(5):511–521

    Article  Google Scholar 

  • Haussler D, O’Brien SJ, Ryder OA, Barker FK, Clamp M, Crawford AJ, Hanner R, Hanotte O, Johnson WE, McGuire JA, Miller W, Murphy RW, Murphy WJ, Sheldon FH, Sinervo B, Venkatesh B, Wiley EO, Allendorf FW, Amato G, Baker CS, Bauer A, Beja-Pereira A, Bermingham E, Bernardi G, Bonvicino CR, Brenner S, Burke T, Cracraft J, Diekhans M, Edwards S, Ericson PGP, Estes J, Fjelsda J, Flesness N, Gamble T, Gaubert P, Graphodatsky AS, Graves JAM, Green ED, Green RE, Hackett S, Hebert P, Helgen KM, Joseph L, Kessing B, Kingsley DM, Lewin HA, Luikart G, Martelli P, Moreira MAM, Nguyen N, Orti G, Pike BL, Rawson DM, Schuster SC, Seuanez HN, Shaffer HB, Springer MS, Stuart JM, Sumner J, Teeling E, Vrijenhoek RC, Ward RD, Warren WC, Wayne R, Williams TM, Wolfe ND, Zhang YP (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10 000 vertebrate species. J Hered 100(6):659–674

    Article  Google Scholar 

  • Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C, Layman D, Magrini V, McPherson JD, Miner TL, Minx P, Nash WE, Nhan MN, Nelson JO, Oddy LG, Pohl CS, Randall-Maher J, Smith SM, Wallis JW, Yang SP, Romanov MN, Rondelli CM, Paton B, Smith J, Morrice D, Daniels L, Tempest HG, Robertson L, Masabanda JS, Griffin DK, Vignal A, Fillon V, Jacobbson L, Kerje S, Andersson L, Crooijmans RPM, Aerts J, van der Poel JJ, Ellegren H, Caldwell RB, Hubbard SJ, Grafham DV, Kierzek AM, McLaren SR, Overton IM, Arakawa H, Beattie KJ, Bezzubov Y, Boardman PE, Bonfield JK, Croning MDR, Davies RM, Francis MD, Humphray SJ, Scott CE, Taylor RG, Tickle C, Brown WRA, Rogers J, Buerstedde JM, Wilson SA, Stubbs L, Ovcharenko I, Gordon L, Lucas S, Miller MM, Inoko H, Shiina T, Kaufman J, Salomonsen J, Skjoedt K, Wong GKS, Wang J, Liu B, Yu J, Yang HM, Nefedov M, Koriabine M, deJong PJ, Goodstadt L, Webber C, Dickens NJ, Letunic I, Suyama M, Torrents D, von Mering C, Zdobnov EM, Makova K, Nekrutenko A, Elnitski L, Eswara P, King DC, Yang S, Tyekucheva S, Radakrishnan A, Harris RS, Chiaromonte F, Taylor J, He JB, Rijnkels M, Griffiths-Jones S, Ureta-Vidal A, Hoffman MM, Severin J, Searle SMJ, Law AS, Speed D, Waddington D, Cheng Z, Tuzun E, Eichler E, Bao ZR, Flicek P, Shteynberg DD, Brent MR, Bye JM, Huckle EJ, Chatterji S, Dewey C, Pachter L, Kouranov A, Mourelatos Z, Hatzigeorgiou AG, Paterson AH, Ivarie R, Brandstrom M, Axelsson E, Backstrom N, Berlin S, Webster MT, Pourquie O, Reymond A, Ucla C, Antonarakis SE, Long MY, Emerson JJ, Betran E, Dupanloup I, Kaessmann H, Hinrichs AS, Bejerano G, Furey TS, Harte RA, Raney B, Siepel A, Kent WJ, Haussler D, Eyras E, Castelo R, Abril JF, Castellano S, Camara F, Parra G, Guigo R, Bourque G, Tesler G, Pevzner PA, Smit A, Fulton LA, Mardis ER, Wilson RK (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716

    Article  CAS  Google Scholar 

  • Huey RB, Janzen FJ (2008) Climate warming and environmental sex determination in tuatara: the last of the Sphenodontians? Proc R Soc Lond B Biol Sci 275(1648):2181–2183

    Article  Google Scholar 

  • Janes DE, Wayne ML (2006) Evidence for a genotype × environment interaction in sex-determining response to incubation temperature in the leopard gecko, Eublepharis macularius. Herpetologica 62(1):56–62

    Article  Google Scholar 

  • Janes DE, Bermudez D, Guillette LJ, Wayne ML (2007) Estrogens induced male production at a female-producing temperature in a reptile (Leopard Gecko, Eublepharis macularius) with temperature-dependent sex determination. J Herpetol 41(1):9–15

    Article  Google Scholar 

  • Janes DE, Organ C, Valenzuela N (2008) New resources inform study of genome size, content, and organization in nonavian reptiles. Integr Comp Biol 48(4):447–453

    Article  PubMed  Google Scholar 

  • Janes DE, Ezaz T, Graves JAM, Edwards SV (2009) Recombination and nucleotide diversity in the sex chromosomal pseudoautosomal region of the emu, Dromaius novaehollandiae. J Hered 100(2):125–136

    Article  PubMed  CAS  Google Scholar 

  • Janes DE, Fujita MK, Organ CL, Shedlock AM, Edwards SV (2010a) Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genom Hum Genet (in press)

    Google Scholar 

  • Janes DE, Organ CL, Edwards SV (2010b) Variability in sex-determining mechanisms influences genome complexity in Reptilia. Cytogenet Genome Res 127(2–4):242–248

    Google Scholar 

  • Janzen FJ, Krenz JG (2004) Phylogenetics: which was first, TSD or GSD? In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 121–130

    Google Scholar 

  • Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Graves JAM, Lyapunova E (1995) Absence of Sry in species of the vole Ellobius. Nat Genet 11(2):117–118

    Article  PubMed  CAS  Google Scholar 

  • Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C (2009) The ZW micro-sex chromosomes of the chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y (2007) Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117(1–4):92–102

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, Kohno S, Matsuda Y (2009) The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma 118(1):43–51

    Article  PubMed  Google Scholar 

  • King RB, Lawson R (1996) Sex-linked inheritance of fumarate hydratase alleles in natricine snakes. J Hered 87:81–83

    Article  Google Scholar 

  • Lang JW, Andrews HV (1994) Temperature-dependent sex determination in crocodilians. J Exp Zool 270(1):28–44

    Article  Google Scholar 

  • Mank JE (2009) The W, X, Y and Z of sex-chromosome dosage compensation. Trends Genet 25(5):226–233

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y (2006) Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA 103(48):18190–18195

    Article  PubMed  CAS  Google Scholar 

  • Melamed E, Arnold AP (2007) Regional differences in dosage compensation on the chicken Z chromosome. Genome Biol 8(9):R202

    Article  PubMed  Google Scholar 

  • Mitchell NJ, Nelson NJ, Cree A, Pledger S, Keall SN, Daugherty CH (2006) Support for a rare pattern of temperature-dependent sex determination in archaic reptiles: evidence from two species of tuatara (Sphenodon). Front Zool 3:9

    Article  PubMed  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex linked genes. Springer, Berlin

    Book  Google Scholar 

  • Organ CL, Janes DE (2008) Evolution of sex chromosomes in Sauropsida. Integr Comp Biol 48(4):512–519

    Article  PubMed  Google Scholar 

  • Organ CL, Janes DE, Meade A, Pagel M (2009) Genotypic sex determination enabled adaptive radiations of extinct marine reptiles. Nature 461(7262):389–392

    Article  PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    Article  PubMed  CAS  Google Scholar 

  • Pokorna M, Kratochvil L (2009) Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc 156(1):168–183

    Article  Google Scholar 

  • Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM (2007) Temperature sex reversal implies sex gene dosage in a reptile. Science 316(5823):411

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1987) Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116(1):161–167

    PubMed  CAS  Google Scholar 

  • Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays 26(6):639–645

    Article  PubMed  Google Scholar 

  • Shine R, Warner DA, Radder R (2007) Windows of embryonic sexual lability in two lizard species with environmental sex determination. Ecology 88(7):1781–1788

    Article  PubMed  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240–244

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Fairlie PG, Doran TJ, Sinclair AH (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1994) Sex chromosomes and sex determination in vertebrates. CRC Press, Boca Raton, FL

    Google Scholar 

  • Standora EA, Spotila JR (1985) Temperature-dependent sex determination in sea turtles. Copeia 3:711–722

    Article  Google Scholar 

  • Uller T, Mott B, Odierna G, Olsson M (2006) Consistent sex ratio bias of individual female dragon lizards. Biol Lett 2(4):569–572

    Article  PubMed  Google Scholar 

  • Valenzuela N (2004) Introduction. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 1–4

    Google Scholar 

  • Valenzuela N, LeClere A, Shikano T (2006) Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination. Evol Dev 8(5):424–432

    Article  PubMed  CAS  Google Scholar 

  • Viets BE, Tousignant A, Ewert MA, Nelson CE, Crews D (1993) Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J Exp Zool 265(6):679–683

    Article  PubMed  CAS  Google Scholar 

  • Viets BE, Ewert MA, Talent LG, Nelson CE (1994) Sex-determining mechanisms in squamate reptiles. J Exp Zool 270(1):45–56

    Article  Google Scholar 

  • Vogel W, Jainta S, Rau W, Geerkens C, Baumstark A, Correa-Cerro LS, Ebenhoch C, Just W (1998) Sex determination in Ellobius lutescens: the story of an enigma. Cytogenet Cell Genet 80(1–4):214–221

    Article  PubMed  CAS  Google Scholar 

  • Wagner E (1980) Temperature-dependent sex determination in a gekko lizard. Q Rev Biol 55:21, appendix

    Google Scholar 

  • Warner DA, Shine R (2008) The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451(7178):566–568

    Article  PubMed  CAS  Google Scholar 

  • Warner DA, Shine R (2009) Maternal and environmental effects on offspring phenotypes in an oviparous lizard: do field data corroborate laboratory data? Oecologia 161(1):209–220

    Article  PubMed  Google Scholar 

  • While GM, Wapstra E (2009) Snow skinks (Niveoscincus ocellatus) do not shift their sex allocation patterns in response to mating history. Behaviour 146:1405–1422

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Miguel Alcaide, Maude Baldwin, Elena Gonzalez, June Yong Lee, Christopher Organ, and Irene Salicini for their critical reviews of this chapter. This work has benefited from conversations with Nicole Valenzuela (NV), Scott V. Edwards (SVE), Tariq Ezaz, Jennifer A.M. Graves, Arthur Georges, and Andrew Sinclair. Support in the laboratory and valuable discussions were shared by Christopher Balakrishnan, Charles Chapus, and Andrew Shedlock. Funding for this work was provided by a grant from the United States National Science Foundation (MCB0817687) to NV and SVE. Last, I would like to thank Pierre Pontarotti for the invitation to contribute to the 13th Evolutionary Biology Meeting at Marseille where this work was presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Janes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janes, D.E. (2010). Extinct and Extant Reptiles: A Model System for the Study of Sex Chromosome Evolution. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Molecular and Morphological Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12340-5_1

Download citation

Publish with us

Policies and ethics