Photochemistry of Organic Pollutants in/on Snow and Ice

  • Amanda M. GrannasEmail author
Part of the From Pole to Pole book series (POLE)


Organic pollutant cycling and fate is impacted by the presence of snow and ice, which can serve as a repository for deposited species and also as a chemical reaction medium. Photochemistry (light-induced chemistry) occurring in/on snow and ice at Earth’s surface is now known to play an important role in a variety of environmentally relevant processes including the production and release of atmospherically relevant species such as halogens, nitrogen oxides, and volatile organic compounds. Less is known about the role of snow and ice photochemistry in organic pollutant fate, but increasing recent evidence points to the potential importance of photochemical alteration of organic pollutants in sunlit snowpacks. This chapter describes recent work during and since International Polar Year (2007) aimed at investigating the potential importance of photochemistry to organic pollutant processing in snow and ice.


Organic Contaminant Photochemical Process Photochemical Degradation Snow Crystal Natural Organic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adeeko A, Li D, Doucet J, Cooke GM, Trasler JM, Robaire B, Hales BF (2003) Gestational exposure to persistent organic pollutants: maternal liver residues, pregnancy outcome, and effects on hepatic gene expression profiles in the dam and fetus. Tox Sci 72:242–252CrossRefGoogle Scholar
  2. AMAP Assessment (1998) Arctic pollution issues. Arctic Monitoring and Assessment Programme, Oslo, Norway 1998Google Scholar
  3. Ashbourn SFM, Elsila JE, Dworkin JP, Bernstein MP, Sandford SA, Allamandola LJ (2007) Ultraviolet photolysis of anthracene in H2O interstellar ice analogs: potential connection to meteoritic organics. Meteor Planet Sci 42(12):2035–2041CrossRefGoogle Scholar
  4. AMAP Assessment (2009) Assessment of persistent organic pollutants in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway. 83 ppGoogle Scholar
  5. Bartels-Rausch T, Jacobi H-W, Kahan TF, Thomas JL, Thomson ES, Abbatt JPD, Ammann M, Blackford JR, Bluhm H, Boxe C, Domine F, Frey MM, Gladich I, Guzman MI, Heger D, Huthwelker Th, Kl’an P, Kuhs WF, Kuo MH, Maus S, Moussa SG, McNeill VF, Newberg JT, Pettersson JBC, Roeselov´a M, Sodeau JR (2012) Relationship between snow microstructure and physical and chemical processes. Atmos Chem Phys Discuss 12:30409–30541Google Scholar
  6. Beine H, Anastasio C, Domine F, Douglas T, Barret M, France J, King M, Hall SR, Ullmann K (2012) Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska. J Geophys Res 117 D00R15. doi: 10.1029/2011JD016650
  7. Beland P, Deguise S, Girard C, Lagace A, Martineau D, Michaud LR (1993) Toxic compounds and health and reproductive effects in St. Lawrence Beluga whales. J Great Lakes Res 19:766–775Google Scholar
  8. Bergman A, Olsson M (1985) Pathology of Baltic grey seal and ringed seal females with special reference to adrenocortical hyperplasia: is environmental pollution the cause of a widely distributed disease syndrome? Finnish Game Res 44:47–62Google Scholar
  9. Blaha L, Klánová J, Klán P, Janosek J, Skarek M, Ruzicka R (2004) Toxicity increases in ice containing monochlorophenols upon photolysis: environmental consequences. Environ Sci Technol 38:2873–2878CrossRefGoogle Scholar
  10. Bondy G, Armstrong C, Coady L, Doucet J, Robertson P, Feeley M, Barker M (2003) Toxicity of the chlordane metabolite oxychlordane in female rate: clinical and histopathological changes. Food Chem Toxicol 41:291–301CrossRefGoogle Scholar
  11. Bosveld ATC, Van Den Berg M (1994) Effects of PCBs, PCDDs and PCDFs on fish-eating birds. Environ Rev 2:147–166CrossRefGoogle Scholar
  12. Bower JP, Anastasio C (2013) Measuring a 10,000-fold enhancement of singlet molecular oxygen (1O2*) concentration on illuminated ice relative to the corresponding liquid solution. Atmos Environ 75:188–195CrossRefGoogle Scholar
  13. Cho H, Shepson PB, Barrie LA, Cowin JP, Zaveri R (2002) NMR investigation of the quasi-brine layer in ice/brine mixtures. J Phys Chem B 106:11226–11232CrossRefGoogle Scholar
  14. Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39:385–398CrossRefGoogle Scholar
  15. Dolinova J, Ruzicka R, Kurkova R, Klánová J, Klán P (2006) Oxidation of aromatic and aliphatic hydrocarbons by OH radicals photochemically generated from H2O2 in ice. Environ Sci Technol 40:7668–7674CrossRefGoogle Scholar
  16. Dominé F, Shepson PB (2002) Air-snow interactions and atmospheric chemistry. Science 297:1506–1510CrossRefGoogle Scholar
  17. Domine F, Bock J, Voisin D, Donaldson DJ (2013) Can we model snow photochemistry? Problems with the current approaches. J Phys Chem A 117(23):4733–4749CrossRefGoogle Scholar
  18. Dominé F, Albert M, Huthwelker T, Jacobi H-W, Kokhanovsky AA, Lehning M, Picard G, Simpson WR (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8:171–208CrossRefGoogle Scholar
  19. Dubowski Y, Hoffmann MR (2000) Photochemical transformations in ice: implications for the fate of chemical species. Geophys Res Lett 27:3321–3324CrossRefGoogle Scholar
  20. Evans AC, Meinert C, Giri C, Goesmann F, Meierhenrich UJ (2012) Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chem Soc Rev 41(16):5447–5458CrossRefGoogle Scholar
  21. Faraday M (1859) On the regelation and on the conservation of force. Philos Mag 17:162–169Google Scholar
  22. Fisher FN, King MD, Lee-Taylor J (2005) Extinction of UV-visible radiation in wet midlatitude (maritime) snow: Implications for increased NOx emission. J Geophys Res 110:D21301. doi: 10.1029/2005JD005963 CrossRefGoogle Scholar
  23. Galbavy ES, Ram K, Anastasio C (2010) 2-nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J Photochem Photobio A Chem 209:186–192Google Scholar
  24. Giesy JP, Ludwig JP, Tillitt DE (1994) Deformities in birds of the Great Lakes region. Environ Sci Technol 28:128A–135AGoogle Scholar
  25. Grannas AM, Jones AE, Dibb J, Ammann M, Anastasio C, Beine HJ, Bergin M, Bottenheim J, Boxe CS, Carver G, Chen G, Crawford JH, Dominé F, Frey MM, Guzman MI, Heard DE, Helmig D, Hoffmann MR, Honrath RE, Huey LG, Hutterli M, Jacobi HW, Klán P, Lefer B, McConnell J, Plane J, Sander R, Savarino J, Shepson PB, Simpson WR, Sodeau JR, von Glasow R, Weller R, Wolff EW, Zhu T (2007a) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373CrossRefGoogle Scholar
  26. Grannas AM, Bausch AR, Mahanna KM (2007b) Enhanced aqueous photochemical reaction rates after freezing. J Phys Chem A 111:11043–11049CrossRefGoogle Scholar
  27. Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánova J, Macdonald RW, Meyer T, Wania F (2013) The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13:1–35CrossRefGoogle Scholar
  28. Grannas AM, Pagano LP, Pierce BC, Bobby R, Fede A (2014) Role of dissolved organic matter in ice photochemistry. Environ Sci Technol 48:10725–10733CrossRefGoogle Scholar
  29. Guzman MI, Hoffmann MR, Colussi AJ (2007) Photolysis of pyruvic acid in ice: possible relevance to CO and CO2 ice core record anomalies. J Geophys Res-Atmos 112:D10123. doi: 10.1029/2006JD007886 CrossRefGoogle Scholar
  30. Hamer PD, Shallcross DE, Yabushita A, Kawasaki M, Marecal V, Boxe CS (2014) Investigating the photo-oxidative and heterogeneous chemical production of HCHO in the snowpack at the South Pole, Antarctica. Environ Chem 11:459–471CrossRefGoogle Scholar
  31. Harrison PTC, Humfrey CDN, Litchfield M, Peakall D, Shuker LK (1995) Environmental estrogens: consequences to human health and wildlife. IEH-Med Res Counc, LeicesterGoogle Scholar
  32. Heger D, Jirkovsky J, Klán P (2005) Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy. J Phys Chem A 109:6702–6709CrossRefGoogle Scholar
  33. Heger D, Klánová J, Klán P (2006) Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing. J Phys Chem B 110:1277–1287CrossRefGoogle Scholar
  34. Heger D, Nachtigallova D, Surman F, Krausko J, Magyarova B, Brumovsky M, Rubes M, Gladich I, Klán P (2011) Self-organization of 1-methylnaphthalene on the surface of artificial snow grains: a combined experimental-computational approach. J Phys Chem A 115:11412–11422CrossRefGoogle Scholar
  35. Holoubek I, Klán P, Ansorgová A, Favero D (2000) Photochemistry of PBT compounds in ice—new potential source of ice contamination? Organohalogen Compd 46:228–231Google Scholar
  36. Jacobi HW, Annor T, Quansah E (2006) Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow. J Photochem Photobiol A-Chem 179:330–338CrossRefGoogle Scholar
  37. Kahan TF, Donaldson DJ (2008) Heterogeneous ozonation kinetics of phenanthrene at the air-ice interface. Environ Res Lett 3. doi: 10.1088/1748-9326/3/4/045006
  38. Kahan TF, Donaldson DJ (2010) Benzene photolysis on ice: implications for the fate of organic contaminants in the winter. Environ Sci Technol 44:3819–3824CrossRefGoogle Scholar
  39. Kahan TF, Zhao R, Jumaa KB, Donaldson DJ (2010) Anthracene photolysis in aqueous solution and ice: photon flux dependence and comparison of kinetics in bulk ice and at the air-ice interface. Environ Sci Technol 44:1302–1306CrossRefGoogle Scholar
  40. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors. Environ Health Perspec 104:715–740CrossRefGoogle Scholar
  41. Kim K, Choi W (2011) Enhanced redox conversion of chromate and arsenite in ice. Environ Sci Technol 45:2202–2208CrossRefGoogle Scholar
  42. King MD, Simpson WR (2001) Extinction of UV radiation in Arctic snow at Alert, Canada (82 °N). J Geophys Res 106:12499–12507CrossRefGoogle Scholar
  43. King MD, France JL, Fisher FN, Beine HJ (2005) Measurement and modelling of UV radiation penetration and photolysis rates of nitrate and hydrogen peroxide in Antarctic sea ice: an estimate of the production rate of hydroxyl radicals in first-year sea ice. J Photochem Photobiol A Chem 176:39–49CrossRefGoogle Scholar
  44. Klán P, Holoubek I (2002) Ice (photo)chemistry. Ice as a medium for long-term (photo)chemical transformations—environmental implications. Chemosphere 46:1201–1210CrossRefGoogle Scholar
  45. Klán P, Ansorgova A, Del Favero D, Holoubek I (2000a) Photochemistry of chlorobenzene in ice. Tetrahedron Lett 41:7785–7789CrossRefGoogle Scholar
  46. Klán P, Janosek J, Kriz Z (2000b) Photochemistry of valerophenone in solid solutions. J Photochem Photobiol A-Chem 134:37–44CrossRefGoogle Scholar
  47. Klán P, Del Favero D, Ansorgova A, Klánová J, Holoubek I (2001) Photodegradation of halobenzenes in water ice. Environ Sci Pollut Res 8:195–200CrossRefGoogle Scholar
  48. Klán P, Klánová J, Holoubek I, Cupr P (2003) Photochemical activity of organic compounds in ice induced by sunlight irradiation: the svalbard project. Geophys Res Lett 30(art. no. 1313)Google Scholar
  49. Klánová J, Klán P, Heger D, Holoubek I (2003a) Comparison of the effects of UV, H2O2/UV and gamma-irradiation processes on frozen and liquid water solutions of monochlorophenols. Photochem Photobiol Sci 2:1023–1031CrossRefGoogle Scholar
  50. Klánová J, Klán P, Nosek J, Holoubek I (2003b) Environmental ice photochemistry: monochlorophenols. Environ Sci Technol 37:1568–1574CrossRefGoogle Scholar
  51. Koop T, Kapilashrami A, Moline LT, Moline MJ (2000) Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer. J Geophys Res 105:26393–26402. doi: 10.1029/2000JD900413 CrossRefGoogle Scholar
  52. Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry (IUPAC technical report). Pure Appl Chem 76:2105–2146Google Scholar
  53. Kurkova R, Ray D, Nachtigallova D, Klán P (2011) Chemistry of small organic molecules on snow grains: the applicability of artificial snow for environmental studies. Environ Sci Technol 45:3430–3436CrossRefGoogle Scholar
  54. Liao J, Huey LG, Liu Z, Tanner DJ, Cantrell CA, Orlando JJ, Flocke FM, Shepson PB, Weinheimer AJ, Hall SR, Ullmann K, Beine HJ, Wang Y, Ingall ED, Stephens CR, Hornbrook RS, Apel EC, Riemer D, Fried A, Mauldin RL III, Smith JN, Staebler RM, Neuman JA, Nowak JB (2014) High levels of molecular chlorine in the Arctic atmosphere. Nat Geosci 7:91–94CrossRefGoogle Scholar
  55. Lignell A, Gudipati M (2015) Mixing of the Immiscible: hydrocarbons in water-ice near the ice crystallization temperature. J Phys Chem A 119:2607–2613Google Scholar
  56. Literak J, Klán P, Heger D, Loupy A (2003) Photochemistry of alkyl aryl ketones on alumina, silica-gel and water ice surfaces. J Photochem Photobiol A-Chem 154:155–159CrossRefGoogle Scholar
  57. Loewe H, Spiegel JK, Schneebeli M (2011) Interfacial and structural relaxations of snow under isothermal conditions. J Glaciol 57:499–510CrossRefGoogle Scholar
  58. Matykiewiczová N, Klánová J, Klán P (2007) Photochemical degradation of PCBs in snow. Environ Sci Technol 41:8308–8314CrossRefGoogle Scholar
  59. McNeill VF, Grannas AM, Abbatt JPD, Ammann M, Ariya P, Bartels-Rausch T, Dominé F, Donaldson DJ, Guzman MI, Heger D, Kahan T, Klán P, Masclin S, Toubin C, Voisin D (2012) Organics in environmental ices: sources, chemistry, and impacts. Atm Chem Phys 12:9653–9678CrossRefGoogle Scholar
  60. Menor-Salyan C, Marin-Yaseli MR (2013) A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene, chemistry—A. Eur J 19(20):6488–6497CrossRefGoogle Scholar
  61. Nielsen J (2000)  Health statistics in the Nordic countries 1998.  Mordisk Medicinalstatistisk Komite, KobenhavnGoogle Scholar
  62. Nuevo M, Milam SN, Sandford SA (2012) Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH3 and H2O + NH3 ices. Astrobiology 12(4):295–314CrossRefGoogle Scholar
  63. Pearce PA, Peakall DB, Reynolds LM (1979) Shell thinning and residues of organochlorines and mercury in seabird eggs, Eastern Canada 1970–1976. Pestic Monit J 13:61–68Google Scholar
  64. Pratt KA, Custard KD, Shepson PB, Douglas TA, Pohler D, General S, Zielcke J, Simpson WR, Platt U, Tanner DJ, Huey LG, Carlsen M, Stirm BH (2013) Photochemical production of molecular bromine in Arctic surface snowpacks. Nat Geosci. doi: 10.1038/NGE01779 Google Scholar
  65. Ram K, Anastasio C (2009) Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow. Atmos Environ 43:2252–2259CrossRefGoogle Scholar
  66. Ratcliff DA (1970) Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J Appl Ecol 7:67–115CrossRefGoogle Scholar
  67. Ratcliffe DA (1967) Decrease in eggshell weight in certain birds of prey. Nature 215:208–210CrossRefGoogle Scholar
  68. Ray D, Kurkova R, Hovorkova I, Klán P (2011) Determination of the specific surface area of snow using ozonation of 1,1-diphenylethylene. Environ Sci Technol 45:10061–10067CrossRefGoogle Scholar
  69. Ray D, Malongwe J, Klan P (2013) Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures. Environ Sci Technol 47:6773–6780CrossRefGoogle Scholar
  70. Ross PS, DeSwart RL, Reijingers PJH, VanLoveren H, Vos JG, Osterhaus ADME (1995) Contaminant-related suppression of delayed-type hypersensitivity and antibody responses in harbor seals fed herring from the Baltic Sea. Environ Health Perspec 103:162–167CrossRefGoogle Scholar
  71. Rowland GA, Grannas AM (2011) A solid-phase chemical actinometer file for measurement of solar UV penetration into snowpack. Cold Reg Sci Technol 66:75–83CrossRefGoogle Scholar
  72. Rowland GA, Bausch AR, Grannas AM (2011) Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under Arctic field conditions. Environ Poll 159:1076–1084CrossRefGoogle Scholar
  73. Ruzicka R, Barakova L, Klán P (2005) Photodecarbonylation of dibenzyl ketones and trapping of radical intermediates by copper(II) chloride in frozen aqueous solutions. J Phys Chem B 109:9346–9353CrossRefGoogle Scholar
  74. Safe SH (1994) Polychlorinated biphenyls (PCBs)—environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149CrossRefGoogle Scholar
  75. Scaiano, J. C. (ed): Handbook of Organic Photochemistry, CRC Press: Boca Raton (FL), 1989, vol. 1, 451 pGoogle Scholar
  76. Shepson PB, Ariya PA, Deal CJ, Donaldson DJ, Douglas TA, Loose B, Maksym T, Matrai PA, Russell LM, Saenz B, Stefels J, Steiner N (2012) Changing polar environments: interdisciplinary challenges. EOS Trans Am Geophys Union 93:117–124Google Scholar
  77. Simpson WR, von Glasgow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter L, Frieß U, Goodsite M, Heard D, Hutterli M, Jacobi H-W, Kaleschke H, Neff W, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418CrossRefGoogle Scholar
  78. Steffen A, Douglas T, Amyot M, Ariya P, Aspmo K, Berg T, Bottenheim J, Brooks S, Cobbett F, Dastoor A, Dommergue A, Ebinghaus R, Ferrari C, Gardfeldt K, Goodsite ME, Lean D, Poulain AJ, Scherz C, Skov H, Sommar J, Temme C (2008) A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos Chem Phys 8:1445–1482CrossRefGoogle Scholar
  79. Warren SG (1982) Optical properties of snow. Rev Geophys 20:67–89CrossRefGoogle Scholar
  80. Weber J, Kurkova R, Klánová J, Klán P, Halsall CJ (2009) Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments. Environ Poll 157:3308–3313CrossRefGoogle Scholar
  81. Wei X, Miranda PB, Shen YR (2000) Surface vibrational spectroscopy study of surface melting of ice. Phys Rev Lett 86:1554–1557CrossRefGoogle Scholar
  82. Workman EJ, Reynolds SE (1950) Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys Rev 78:254–259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Villanova UniversityVillanovaUSA

Personalised recommendations