Skip to main content

Abstract

Danish studies in the Arctic atmosphere were almost all carried out on Greenland. There were not any specific programmes within IPY but activities were performed in the framework of Arctic Monitoring and Assessment Programme (AMAP) Financed from Denmark by means from DANCEA. A long series of studies in other spheres than the atmosphere have also been carried out but they will not be described here as they are beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariya PA, Skov H, Grage ML, Goodsite ME (2008) Gaseous elemental mercury in the ambient atmosphere: review of the application of theoretical calculations and experimental studies for determination of reaction coefficients and mechanisms with halogens and other reactants (Chapter 4). Adv Quantum Chem 55:44–54

    Google Scholar 

  • Barrie LA, Hoff RM, Daggupaty SM (1981) The influence of mid-latitudinal pollution sources on haze in the Canadian Arctic. Atmos Environ 15(8):1407–1419

    Article  Google Scholar 

  • Bjorkman MP, Kuhnel R, Partridge DG, Roberts TJ, Aas W, Mazzola M, Viola A, Hodson A, Strom J, Isaksson E (2013) Nitrate dry deposition in Svalbard. Tellus Ser B-Chem Phys Meteorol 65:18. doi:10.3402/tellusb.v65i0.19071

    Article  Google Scholar 

  • Bossi R, Skov H, Vorkamp K, Christensen J, Rastogi SC, Egelov A, Petersen D (2008) Atmospheric concentrations of organochlorine pesticides, polybrominated diphenyl ethers and polychloronaphthalenes in Nuuk. South-West Greenland, Atmos Environ 42(31):7293–7303. doi:10.1016/j.atmosenv.2008.06.049

    Google Scholar 

  • Bossi R, Skjoth CA, Skov H (2013) Three years (2008–2010) of measurements of atmospheric concentrations of organochlorine pesticides (OCPs) at Station Nord, North-East Greenland. Environ Sci-Process Impacts 15(12):2213–2219. doi:10.1039/c3em00304c

    Google Scholar 

  • Bourgeois Q, Bey I (2011) Pollution transport efficiency toward the Arctic: sensitivity to aerosol scavenging and source regions. J Geophys Res 116(D8):D08213. doi:10.1029/2010jd015096

    Article  Google Scholar 

  • Brooks S, Saiz-Lopez A, Skov H, Lindberg S, Plane JMC, Goodsite ME (2006) The mass balance of mercury in the springtime polar environment. Geophys Res Lett 33:L13812

    Article  Google Scholar 

  • Christensen JH (1997) The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the Arctic. Atmos Environ 31(24):4169–4191

    Article  Google Scholar 

  • Christensen JH, Brandt J, Frohn LM, Skov H (2004) Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos Chem Phys 4:2251–2257

    Article  Google Scholar 

  • Dibble TS, Zelie MJ, Mao H (2012) Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals. Atmos Chem Phys 12(21):10271–10279. doi:10.5194/acp-12-10271-2012

    Article  Google Scholar 

  • Domine F, Rauzy C (2004) Influence of the ice growth rate on the incorporation of gaseous HCl. Atmos Chem Phys 4:2513–2519

    Article  Google Scholar 

  • Douglas TA et al (2012) The ultimate fate of mercury deposited to arctic marine and terrestrial ecosystems. Environ Chem (In press)

    Google Scholar 

  • Fenger M, Sorensen LL, Kristensen K, Jensen B, Nguyen QT, Nojgaard JK, Massling A, Skov H, Becker T, Glasius M (2013) Sources of anions in aerosols in northeast Greenland during late winter. Atmos Chem Phys 13(3):1569–1578. doi:10.5194/acp-13-1569-2013

    Article  Google Scholar 

  • Ferrari CP, Dommergue A, Boutron CF, Skov H, Goodsite M, Jensen B (2004) Nighttime production of elemental gaseous mercury in interstitial air of snow at Station Nord. Greenland, Atmos Environ 38(17):2727–2735

    Article  Google Scholar 

  • Flyger H, Heidam NZ, Hansen KA, Rasmussen L, Megaw WJ (1980) Background levels of the summer tropospheric aerosol and trace gases in Greenland. J Aerosol Sci 11(1):95–110

    Article  Google Scholar 

  • Goodsite ME, Plane JMC, Skov H (2004) A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere. Environ Sci Technol 38(6):1772–1776

    Article  Google Scholar 

  • Goodsite M, Plane J, Skov H (2012) A theoretical study of the oxidation of Hg0 to HgBr 2 in the troposphere (vol 38, pg 1772, 2004). Environ Sci Technol 46(9):5262

    Google Scholar 

  • Gribble GJ (2000) The natural production of organobromine compounds. Environ Sci Pollut R 7(1):37–49

    Article  Google Scholar 

  • Heidam NZ (1981) On the origin of the Arctic Aerosol—a statistical approach. Atmos Environ 15(8):1421–1427

    Article  Google Scholar 

  • Heidam NZ, Wahlin P, Christensen JH (1999) Tropospheric gases and aerosols in northeast Greenland. J Atmos Sci 56(2):261–278

    Article  Google Scholar 

  • Heidam NZ, Christensen J, Wahlin P, Skov H (2004) Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001. Sci Total Environ 331(1–3):5–28. doi:10.1016/j.scitotenv.2004.03.033

    Article  Google Scholar 

  • Hirdman D, Sodemann H, Eckhardt S, Burkhart JF, Jefferson A, Mefford T, Quinn PK, Sharma S, Strom J, Stohl A (2010) Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos Chem Phys 10(2):669–693

    Article  Google Scholar 

  • Huang L, Gong SL, Jia CQ, Lavoue D (2010) Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol. J Geophys Res-Atmos 115:1–15

    Google Scholar 

  • Impey GA, Shepson PB, Hastie DR, Barrie LA, Anlauf KG (1997) Measurements of photolyzable chlorine and bromine during the Polar sunrise experiment 1995. J Geophys Res-Atmos 102(D13):16005–16010

    Article  Google Scholar 

  • Impey GA, Mihele CM, Anlauf KG, Barrie LA, Hastie DR, Shepson PB (1999) Measurements of photolyzable halogen compounds and bromine radicals during the polar sunrise experiment 1997. J Atmos Chem 34(1):21–37. doi:10.1023/a:1006264912394

    Article  Google Scholar 

  • IPCC (2013) IPCC Fifth assessment report. Rep

    Google Scholar 

  • Klonecki A, Hess P, Emmons L, Smith L, Orlando J, Blake D (2003) Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. J Geophys Res-Atmos 108(D4). doi:10.1029/2002JD002199

  • Krnavek L, Simpson WR, Carlson D, Domine F, Douglas TA, Sturm M (2012) The chemical composition of surface snow in the Arctic: examining marine, terrestrial, and atmospheric influences. Atmos Environ 50:349–359. doi:10.1016/j.atmosenv.2011.11.033

    Article  Google Scholar 

  • Kuhnel R, Bjorkman MP, Vega CP, Hodson A, Isaksson E, Strom J (2013) Reactive nitrogen and sulphate wet deposition at Zeppelin Station, Ny-Alesund, Svalbard. Polar Res 32:14. doi:10.3402/polar.v32i0.19136

    Article  Google Scholar 

  • Li SM, Barrie LA (1993) Biogenic sulfur Aerosol in the Arctic Troposphere. 1. Contributions to total sulfate, J Geophys Res-Atmos, 98(D11):20613–20622

    Google Scholar 

  • Maenhaut W, Cornille P (1989) Trace-element composition and origin of the atmospheric aerosol in the Norwegian Arctic. Atmos Environ 23(11):2551–2569

    Article  Google Scholar 

  • Massling A., Nielsen IE, Kristensen D, Christensen JH, Sørensen LL, Jensen B, Nguyen QT, Nøjgaard JK, Glasius M, Skov H (2015) Atmospheric black carbon and sulfate concentrations in Northeast Greenland, Atmospheric Chemistry and Physics, vol. 15, pp. 9681–9692, doi:10.5194/acp-15-9681-2015, http://www.atmos-chem-phys.net/15/9681/2015/

    Google Scholar 

  • Mcconnell JC, Henderson GS, Barrie L, Bottenheim J, Niki H, Langford CH, Templeton EMJ (1992) Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 355(6356):150–152

    Article  Google Scholar 

  • Moller AK, Barkay T, bu Al-Soud W, Sorensen SJ, Skov H, Kroer N (2011) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. Fems Microbiol Ecol 75(3):390–401

    Google Scholar 

  • Nguyen QT, Skov H, Sørensen LL, Jensen B, Grubbe A, Massling AG, Glasius M, Nøjgaard JK (2012) Source apportionment of particulate matter at Station Nord, North East Greenland. Ready for submission to ACP

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37(1):23–35. doi:10.1016/s0169-7439(96)00044-5

    Article  Google Scholar 

  • Pacyna JM, Vitols V, Hanssen JE (1984) Size-differentiated composition of the Arctic Aerosol at Ny-Alesund Spitsbergen. Atmos Environ 18(11):2447–2459

    Article  Google Scholar 

  • Quinn PK, Miller TL, Bates TS, Ogren JA, Andrews E, Shaw GE (2002) A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J Geophys Res-Atmos 107(D11), doi:10.1029/2001jd001248 (Artn 4130)

  • Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus B 59(1):99–114. doi:10.1111/j.1600-0889.2006.00238.x

    Article  Google Scholar 

  • Quinn PK et al (2011) AMAP 2011. The impact of black carbon on Arctic climate. Rep 128 p

    Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR et al (1998) Arctic springtime depletion of mercury. Nature 394(6691):331–332

    Google Scholar 

  • Shaw PM, Russell LM, Jefferson A, Quinn PK (2010) Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter. Geophys Res Lett 37

    Google Scholar 

  • Shindell DT et al (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8(17):5353–5372. doi:10.5194/acp-8-5353-2008

    Article  Google Scholar 

  • Simpson WR et al (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7(16):4375–4418

    Article  Google Scholar 

  • Skov H, Christensen JH, Goodsite ME, Heidam NZ, Jensen B, Wåhlin P, Geernaert G (2004) Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic. Environ Sci Technol 38(8):2373–2382

    Article  Google Scholar 

  • Skov H et al (2006a) The fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos Environ 40:5452–5463

    Article  Google Scholar 

  • Skov H, Wahlin P, Christensen J, Heidam NZ, Petersen D (2006b) Measurements of elements, sulphate and SO2 in Nuuk Greenland. Atmos Environ 40(25):4775–4781

    Article  Google Scholar 

  • Soerensen AL, Skov H, Jacob DJ, Soerensen BT, Johnson MS (2010a) Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ Sci Technol 44(19):7425–7430

    Article  Google Scholar 

  • Soerensen AL, Skov H, Johnson MS, Glasius M (2010b) Gaseous mercury in coastal urban areas. Environ Chem 7(6):537–547

    Article  Google Scholar 

  • Soerensen AL, Sunderland EM, Holmes CD, Jacob DJ, Yantosca RM, Skov H, Christensen JH, Strode SA, Mason RP (2010c) An improved global model for air-sea exchange of mercury: high concentrations over the north atlantic. Environ Sci Technol 44(22):8574–8580

    Article  Google Scholar 

  • Steffen A et al (2008) A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos Chem Phys 8(6):1445–1482

    Article  Google Scholar 

  • Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res-Atmos 111(D11). doi:10.1029/2005jd006888 (Artn D11306)

  • Sumner AL, Shepson PB (1999) Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398(6724):230–233

    Article  Google Scholar 

  • Wahlin P (2003) COPREM—a multivariate receptor model with a physical approach. Atmos Environ 37(35):4861–4867

    Article  Google Scholar 

  • Wang D, Sañudo Wilhelmy SA (2009) Vanadium speciation and cycling in coastal waters. Mar Chem 117(1–4):52–58. doi:10.1016/j.marchem.2009.06.001

    Article  Google Scholar 

  • Wang Q et al (2011) Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmos Chem Phys 11(23):12453–12473. doi:10.5194/acp-11-12453-2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Skov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skov, H. et al. (2016). Atmospheric Pollution Research on Greenland. In: Kallenborn, R. (eds) Implications and Consequences of Anthropogenic Pollution in Polar Environments. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12315-3_3

Download citation

Publish with us

Policies and ethics