Advertisement

Atmospheric Pollution Research on Greenland

  • Henrik SkovEmail author
  • Rossana Bossi
  • Andreas Massling
  • Lise-Lotte Sørensen
  • Jacob Klenø Nøjgaard
  • Jesper Christensen
  • Kaj Mantzius Hansen
  • Bjarne Jensen
  • Marianne Glasius
Chapter
Part of the From Pole to Pole book series (POLE)

Abstract

Danish studies in the Arctic atmosphere were almost all carried out on Greenland. There were not any specific programmes within IPY but activities were performed in the framework of Arctic Monitoring and Assessment Programme (AMAP) Financed from Denmark by means from DANCEA. A long series of studies in other spheres than the atmosphere have also been carried out but they will not be described here as they are beyond the scope of this chapter.

Keywords

Black Carbon Black Carbon Particle Positive Matrix Factorization Mercury Species Combustion Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ariya PA, Skov H, Grage ML, Goodsite ME (2008) Gaseous elemental mercury in the ambient atmosphere: review of the application of theoretical calculations and experimental studies for determination of reaction coefficients and mechanisms with halogens and other reactants (Chapter 4). Adv Quantum Chem 55:44–54Google Scholar
  2. Barrie LA, Hoff RM, Daggupaty SM (1981) The influence of mid-latitudinal pollution sources on haze in the Canadian Arctic. Atmos Environ 15(8):1407–1419CrossRefGoogle Scholar
  3. Bjorkman MP, Kuhnel R, Partridge DG, Roberts TJ, Aas W, Mazzola M, Viola A, Hodson A, Strom J, Isaksson E (2013) Nitrate dry deposition in Svalbard. Tellus Ser B-Chem Phys Meteorol 65:18. doi: 10.3402/tellusb.v65i0.19071 CrossRefGoogle Scholar
  4. Bossi R, Skov H, Vorkamp K, Christensen J, Rastogi SC, Egelov A, Petersen D (2008) Atmospheric concentrations of organochlorine pesticides, polybrominated diphenyl ethers and polychloronaphthalenes in Nuuk. South-West Greenland, Atmos Environ 42(31):7293–7303. doi: 10.1016/j.atmosenv.2008.06.049 Google Scholar
  5. Bossi R, Skjoth CA, Skov H (2013) Three years (2008–2010) of measurements of atmospheric concentrations of organochlorine pesticides (OCPs) at Station Nord, North-East Greenland. Environ Sci-Process Impacts 15(12):2213–2219. doi: 10.1039/c3em00304c
  6. Bourgeois Q, Bey I (2011) Pollution transport efficiency toward the Arctic: sensitivity to aerosol scavenging and source regions. J Geophys Res 116(D8):D08213. doi: 10.1029/2010jd015096 CrossRefGoogle Scholar
  7. Brooks S, Saiz-Lopez A, Skov H, Lindberg S, Plane JMC, Goodsite ME (2006) The mass balance of mercury in the springtime polar environment. Geophys Res Lett 33:L13812CrossRefGoogle Scholar
  8. Christensen JH (1997) The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the Arctic. Atmos Environ 31(24):4169–4191CrossRefGoogle Scholar
  9. Christensen JH, Brandt J, Frohn LM, Skov H (2004) Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos Chem Phys 4:2251–2257CrossRefGoogle Scholar
  10. Dibble TS, Zelie MJ, Mao H (2012) Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals. Atmos Chem Phys 12(21):10271–10279. doi: 10.5194/acp-12-10271-2012 CrossRefGoogle Scholar
  11. Domine F, Rauzy C (2004) Influence of the ice growth rate on the incorporation of gaseous HCl. Atmos Chem Phys 4:2513–2519CrossRefGoogle Scholar
  12. Douglas TA et al (2012) The ultimate fate of mercury deposited to arctic marine and terrestrial ecosystems. Environ Chem (In press)Google Scholar
  13. Fenger M, Sorensen LL, Kristensen K, Jensen B, Nguyen QT, Nojgaard JK, Massling A, Skov H, Becker T, Glasius M (2013) Sources of anions in aerosols in northeast Greenland during late winter. Atmos Chem Phys 13(3):1569–1578. doi: 10.5194/acp-13-1569-2013 CrossRefGoogle Scholar
  14. Ferrari CP, Dommergue A, Boutron CF, Skov H, Goodsite M, Jensen B (2004) Nighttime production of elemental gaseous mercury in interstitial air of snow at Station Nord. Greenland, Atmos Environ 38(17):2727–2735CrossRefGoogle Scholar
  15. Flyger H, Heidam NZ, Hansen KA, Rasmussen L, Megaw WJ (1980) Background levels of the summer tropospheric aerosol and trace gases in Greenland. J Aerosol Sci 11(1):95–110CrossRefGoogle Scholar
  16. Goodsite ME, Plane JMC, Skov H (2004) A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere. Environ Sci Technol 38(6):1772–1776CrossRefGoogle Scholar
  17. Goodsite M, Plane J, Skov H (2012) A theoretical study of the oxidation of Hg0 to HgBr 2 in the troposphere (vol 38, pg 1772, 2004). Environ Sci Technol 46(9):5262Google Scholar
  18. Gribble GJ (2000) The natural production of organobromine compounds. Environ Sci Pollut R 7(1):37–49CrossRefGoogle Scholar
  19. Heidam NZ (1981) On the origin of the Arctic Aerosol—a statistical approach. Atmos Environ 15(8):1421–1427CrossRefGoogle Scholar
  20. Heidam NZ, Wahlin P, Christensen JH (1999) Tropospheric gases and aerosols in northeast Greenland. J Atmos Sci 56(2):261–278CrossRefGoogle Scholar
  21. Heidam NZ, Christensen J, Wahlin P, Skov H (2004) Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001. Sci Total Environ 331(1–3):5–28. doi: 10.1016/j.scitotenv.2004.03.033 CrossRefGoogle Scholar
  22. Hirdman D, Sodemann H, Eckhardt S, Burkhart JF, Jefferson A, Mefford T, Quinn PK, Sharma S, Strom J, Stohl A (2010) Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos Chem Phys 10(2):669–693CrossRefGoogle Scholar
  23. Huang L, Gong SL, Jia CQ, Lavoue D (2010) Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol. J Geophys Res-Atmos 115:1–15Google Scholar
  24. Impey GA, Shepson PB, Hastie DR, Barrie LA, Anlauf KG (1997) Measurements of photolyzable chlorine and bromine during the Polar sunrise experiment 1995. J Geophys Res-Atmos 102(D13):16005–16010CrossRefGoogle Scholar
  25. Impey GA, Mihele CM, Anlauf KG, Barrie LA, Hastie DR, Shepson PB (1999) Measurements of photolyzable halogen compounds and bromine radicals during the polar sunrise experiment 1997. J Atmos Chem 34(1):21–37. doi: 10.1023/a:1006264912394 CrossRefGoogle Scholar
  26. IPCC (2013) IPCC Fifth assessment report. RepGoogle Scholar
  27. Klonecki A, Hess P, Emmons L, Smith L, Orlando J, Blake D (2003) Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. J Geophys Res-Atmos 108(D4). doi: 10.1029/2002JD002199
  28. Krnavek L, Simpson WR, Carlson D, Domine F, Douglas TA, Sturm M (2012) The chemical composition of surface snow in the Arctic: examining marine, terrestrial, and atmospheric influences. Atmos Environ 50:349–359. doi: 10.1016/j.atmosenv.2011.11.033 CrossRefGoogle Scholar
  29. Kuhnel R, Bjorkman MP, Vega CP, Hodson A, Isaksson E, Strom J (2013) Reactive nitrogen and sulphate wet deposition at Zeppelin Station, Ny-Alesund, Svalbard. Polar Res 32:14. doi: 10.3402/polar.v32i0.19136 CrossRefGoogle Scholar
  30. Li SM, Barrie LA (1993) Biogenic sulfur Aerosol in the Arctic Troposphere. 1. Contributions to total sulfate, J Geophys Res-Atmos, 98(D11):20613–20622Google Scholar
  31. Maenhaut W, Cornille P (1989) Trace-element composition and origin of the atmospheric aerosol in the Norwegian Arctic. Atmos Environ 23(11):2551–2569 CrossRefGoogle Scholar
  32. Massling A., Nielsen IE, Kristensen D, Christensen JH, Sørensen LL, Jensen B, Nguyen QT, Nøjgaard JK, Glasius M, Skov H (2015) Atmospheric black carbon and sulfate concentrations in Northeast Greenland, Atmospheric Chemistry and Physics, vol. 15, pp. 9681–9692, doi: 10.5194/acp-15-9681-2015, http://www.atmos-chem-phys.net/15/9681/2015/
  33. Mcconnell JC, Henderson GS, Barrie L, Bottenheim J, Niki H, Langford CH, Templeton EMJ (1992) Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 355(6356):150–152CrossRefGoogle Scholar
  34. Moller AK, Barkay T, bu Al-Soud W, Sorensen SJ, Skov H, Kroer N (2011) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. Fems Microbiol Ecol 75(3):390–401Google Scholar
  35. Nguyen QT, Skov H, Sørensen LL, Jensen B, Grubbe A, Massling AG, Glasius M, Nøjgaard JK (2012) Source apportionment of particulate matter at Station Nord, North East Greenland. Ready for submission to ACPGoogle Scholar
  36. Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37(1):23–35. doi: 10.1016/s0169-7439(96)00044-5 CrossRefGoogle Scholar
  37. Pacyna JM, Vitols V, Hanssen JE (1984) Size-differentiated composition of the Arctic Aerosol at Ny-Alesund Spitsbergen. Atmos Environ 18(11):2447–2459CrossRefGoogle Scholar
  38. Quinn PK, Miller TL, Bates TS, Ogren JA, Andrews E, Shaw GE (2002) A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J Geophys Res-Atmos 107(D11), doi: 10.1029/2001jd001248 (Artn 4130)
  39. Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus B 59(1):99–114. doi: 10.1111/j.1600-0889.2006.00238.x CrossRefGoogle Scholar
  40. Quinn PK et al (2011) AMAP 2011. The impact of black carbon on Arctic climate. Rep 128 pGoogle Scholar
  41. Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR et al (1998) Arctic springtime depletion of mercury. Nature 394(6691):331–332Google Scholar
  42. Shaw PM, Russell LM, Jefferson A, Quinn PK (2010) Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter. Geophys Res Lett 37Google Scholar
  43. Shindell DT et al (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8(17):5353–5372. doi: 10.5194/acp-8-5353-2008 CrossRefGoogle Scholar
  44. Simpson WR et al (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7(16):4375–4418CrossRefGoogle Scholar
  45. Skov H, Christensen JH, Goodsite ME, Heidam NZ, Jensen B, Wåhlin P, Geernaert G (2004) Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic. Environ Sci Technol 38(8):2373–2382CrossRefGoogle Scholar
  46. Skov H et al (2006a) The fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos Environ 40:5452–5463CrossRefGoogle Scholar
  47. Skov H, Wahlin P, Christensen J, Heidam NZ, Petersen D (2006b) Measurements of elements, sulphate and SO2 in Nuuk Greenland. Atmos Environ 40(25):4775–4781CrossRefGoogle Scholar
  48. Soerensen AL, Skov H, Jacob DJ, Soerensen BT, Johnson MS (2010a) Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ Sci Technol 44(19):7425–7430CrossRefGoogle Scholar
  49. Soerensen AL, Skov H, Johnson MS, Glasius M (2010b) Gaseous mercury in coastal urban areas. Environ Chem 7(6):537–547CrossRefGoogle Scholar
  50. Soerensen AL, Sunderland EM, Holmes CD, Jacob DJ, Yantosca RM, Skov H, Christensen JH, Strode SA, Mason RP (2010c) An improved global model for air-sea exchange of mercury: high concentrations over the north atlantic. Environ Sci Technol 44(22):8574–8580CrossRefGoogle Scholar
  51. Steffen A et al (2008) A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos Chem Phys 8(6):1445–1482CrossRefGoogle Scholar
  52. Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res-Atmos 111(D11). doi: 10.1029/2005jd006888 (Artn D11306)
  53. Sumner AL, Shepson PB (1999) Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398(6724):230–233CrossRefGoogle Scholar
  54. Wahlin P (2003) COPREM—a multivariate receptor model with a physical approach. Atmos Environ 37(35):4861–4867CrossRefGoogle Scholar
  55. Wang D, Sañudo Wilhelmy SA (2009) Vanadium speciation and cycling in coastal waters. Mar Chem 117(1–4):52–58. doi: 10.1016/j.marchem.2009.06.001 CrossRefGoogle Scholar
  56. Wang Q et al (2011) Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmos Chem Phys 11(23):12453–12473. doi: 10.5194/acp-11-12453-2011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Henrik Skov
    • 1
    Email author
  • Rossana Bossi
    • 1
  • Andreas Massling
    • 1
  • Lise-Lotte Sørensen
    • 1
  • Jacob Klenø Nøjgaard
    • 1
  • Jesper Christensen
    • 1
  • Kaj Mantzius Hansen
    • 1
  • Bjarne Jensen
    • 1
  • Marianne Glasius
    • 2
  1. 1.Department of Environmental Science, Arctic Research CenterAarhus UniversityAarhusDenmark
  2. 2.Department of Chemistry, Arctic Research CenterAarhus UniversityAarhusDenmark

Personalised recommendations