Skip to main content

Estimating Human Pose from Occluded Images

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5994))

Included in the following conference series:

Abstract

We address the problem of recovering 3D human pose from single 2D images, in which the pose estimation problem is formulated as a direct nonlinear regression from image observation to 3D joint positions. One key issue that has not been addressed in the literature is how to estimate 3D pose when humans in the scenes are partially or heavily occluded. When occlusions occur, features extracted from image observations (e.g., silhouettes-based shape features, histogram of oriented gradient, etc.) are seriously corrupted, and consequently the regressor (trained on un-occluded images) is unable to estimate pose states correctly. In this paper, we present a method that is capable of handling occlusions using sparse signal representations, in which each test sample is represented as a compact linear combination of training samples. The sparsest solution can then be efficiently obtained by solving a convex optimization problem with certain norms (such as l 1-norm). The corrupted test image can be recovered with a sparse linear combination of un-occluded training images which can then be used for estimating human pose correctly (as if no occlusions exist). We also show that the proposed approach implicitly performs relevant feature selection with un-occluded test images. Experimental results on synthetic and real data sets bear out our theory that with sparse representation 3D human pose can be robustly estimated when humans are partially or heavily occluded in the scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sigal, L., Isard, M., Sigelman, B., Black, M.: Attractive people: Assembling loose-limbed models using non-parametric belief propagation. In: NIPS, pp. 1539–1546 (2004)

    Google Scholar 

  2. Grauman, K., Shakhnarovich, G., Darrell, T.: Inferring 3d structure with a statistical image-based shape model. In: ICCV, pp. 641–647 (2003)

    Google Scholar 

  3. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Discriminative density propagation for 3d human motion estimation. In: CVPR, pp. 390–397 (2005)

    Google Scholar 

  4. Sigal, L., Black, M.: Predicting 3d people from 2d pictures. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 185–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.: Fast algorithms for large scale conditional 3d prediction. In: CVPR (2008)

    Google Scholar 

  6. Agarwal, A., Triggs, B.: A local basis representation for estimating human pose from cluttered images. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 50–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Elgammal, A., Lee, C.: Inferring 3d body pose from silhouettes using activity manifold learning. In: CVPR, vol. 2, pp. 681–688 (2004)

    Google Scholar 

  8. Jaeggli, T., Koller-Meier, E., Gool, L.V.: Learning generative models for multi-activity body pose estimation. IJCV 83(2), 121–134 (2009)

    Article  Google Scholar 

  9. Sminchisescu, C., Kanaujia, A., Metaxas, D.: Bm 3 e: Discriminative density propagation for visual tracking. PAMI 29(11), 2030–2044 (2007)

    Google Scholar 

  10. Bissacco, A., Yang, M.H., Soatto, S.: Fast human pose estimation using appearance and motion via multi-dimensional boosting regression. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  11. Poppe, R.: Evaluating example-based pose estimation: experiments on the HumanEva sets. In: IEEE Workshop on Evaluation of Articulated Human Motion and Pose Estimation (2007)

    Google Scholar 

  12. Okada, R., Soatto, S.: Relevant Feature Selection for Human Pose Estimation and Localization in Cluttered Images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 434–445. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Ning, H., Xu, W., Gong, Y., Huang, T.: Discriminative learning of visual words for 3d human pose estimation. In: CVPR (2008)

    Google Scholar 

  14. Moeslund, T., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81(3), 231–268 (2001)

    Article  MATH  Google Scholar 

  15. Gavrila, D.: The visual analysis of human movement: A survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)

    Article  MATH  Google Scholar 

  16. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Transactions on Computers 22(1), 67–92 (1973)

    Article  Google Scholar 

  17. Felzenszwalb, P., Huttenlocher, D.: Efficient matching of pictorial structures. In: CVPR, vol. 2, pp. 2066–2073 (2000)

    Google Scholar 

  18. Ronfard, R., Schmid, C., Triggs, B.: Learning to parse pictures of people. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 700–714. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Ioffe, S., Forsyth, D.: Probabilistic methods for finding people. IJCV 43(1), 45–68 (2001)

    Article  MATH  Google Scholar 

  20. Ramanan, D., Forsyth, D.: Finding and tracking people from the bottom up. In: CVPR, vol. 2, pp. 467–474 (2003)

    Google Scholar 

  21. Mori, G., Ren, X., Efros, A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: CVPR, vol. 2, pp. 326–333 (2004)

    Google Scholar 

  22. Taylor, C.J.: Reconstruction of articulated objects from point correspondence using a single uncalibrated image. In: CVPR, vol. 1, pp. 667–684 (2000)

    Google Scholar 

  23. Mori, G., Malik, J.: Estimating human body configurations using shape context matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 666–680. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Brand, M.: Shadow puppetry. In: ICCV, pp. 1237–1244 (1999)

    Google Scholar 

  25. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2004)

    Article  MathSciNet  Google Scholar 

  26. Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. PAMI 28(1), 44–58 (2006)

    Google Scholar 

  27. Rosales, R., Sclaroff, S.: Learning body pose via specialized maps. In: NIPS, pp. 1263–1270 (2001)

    Google Scholar 

  28. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: ICCV, pp. 750–757 (2003)

    Google Scholar 

  29. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  30. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  31. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  32. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI 31(2), 210–227 (2009)

    Google Scholar 

  33. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  34. Chen, S., Donoho, D., Saunders, M.: Automatic decomposition by basis pursuit. SIAM Journal of Scientific Computation 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  35. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, JB., Yang, MH. (2010). Estimating Human Pose from Occluded Images. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12307-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12307-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12306-1

  • Online ISBN: 978-3-642-12307-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics