Skip to main content

Triggering and Synchronization of Stick-Slip: Experiments on Spring-Slider System

  • Chapter
  • First Online:
Synchronization and Triggering: from Fracture to Earthquake Processes

Abstract

Triggering and synchronization are the two faces of the same coin; both effects imply that the additional forcing causing triggering and synchronization is much smaller than the main driving force, which means that these phenomena are connected with nonlinear interactions of objects, namely, with initiation of instability in systems that are close to the critical state. In a seismic process, the main driving component is the tectonic stress; earthquakes are considered as dynamic instabilities generated in the process of friction (stick-slip) between faces of geological faults (Brace and Byerlee, 1966; Kanamori and Brodsky, 2004; Ben-Zion, 2008). The additional forcing is exerted by various external impacts: tides, reservoir exploitation, big explosions, magnetic storms, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akay, A. 2002, Acoustics of Friction. J. Acoust. Soc. Am., 111, 1525–1548.

    Article  Google Scholar 

  • Bak, P., C. Tang and K. Wiesenfeld. 1988. Self-organized criticality. Phys. Rev. A38, 364–374.

    Article  Google Scholar 

  • Becker, T.W. 2000. Deterministic Chaos in the Two State-variable Friction Sliders and the Effect of Elastic Interactions. In: Rundle, J.B, Turcotte, D.L. and Klein, W. (Eds.), Geocomplexity and the Physics of Earthquakes. American Geophysical Union, Washington, DC, pp.5–26.

    Chapter  Google Scholar 

  • Ben-Zion, Y., Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Evolutionary Changes and Corresponding Dynamic Regimes, Rev. Geophysics, 46, RG4006, doi:10.1029/2008RG000260, 2008.

    Google Scholar 

  • Beeler, N.M. and D.A. Lockner. 2003. Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence. Journal of Geophysical Research, B108, 2391–2405.

    Article  Google Scholar 

  • Benguigi, L. (1988). Simulation of dielectric failure by means of resistor-diode random lattices. Phys. Rev. B 38, 7211–7214.

    Article  Google Scholar 

  • Blekhman I.I., 1988. Synchronization in Science and Technology. ASME Press, New York.

    Google Scholar 

  • Brace W. E., and I.D. Byerlee. 1966. Stick slip as a mechanism for earthquakes. Science, 153, 990–992.

    Article  Google Scholar 

  • Bocaletti, S., Grebogi, C., Lay, Y.-C., Manchini, H., Maza, D. 2000. The Control of Chaos: Theory and Applications. Physics Reports. 329, 103–197.

    Article  Google Scholar 

  • Bouissou, S., Petit, J., Barquins, M. 1998. Experimental evidence of contact loss during stick-slip: possible implications for seismic behavior. Tectonophysics, 295, 341–350.

    Article  Google Scholar 

  • Bureau, L., T. Baumberger and C. Caroli, 2000, Shear response of a frictional influence to a normal load modulation. Phys. Rev. E, 62, 6810–6820.

    Article  Google Scholar 

  • Chelidze, T., N. Varamashvili, M. Devidze, Z. Chelidze, V. Chikhladze and T. Matcharashvili. 2002. Laboratory study of electromagnetic initiation of slip. Annals of Geophysics, 45, 587–599

    Google Scholar 

  • Chelidze, T., Lursmanashvili, O. 2003. Electromagnetic and mechanical control of slip: laboratory experiments with slider system. Nonlinear Processes in Geophysics, 20, 1–8.

    Google Scholar 

  • Chelidze, T., T. Matcharashvili. 2003a. Electromagnetic control of earthquake dynamics? Computers&Geosciences, 29, 587–593.

    Google Scholar 

  • Chelidze, T., A. Gvelesiani, N. Varamashvili, M. Devidze, V. Chikchladze, Z. Chelidze and M. Elashvili. 2004b. Electromagnetic initiation of slip: laboratory model. Acta Geophysica Polonica, 52, 49–62

    Google Scholar 

  • Chelidze, T., T. Matcharashvili, J. Gogiashvili, O. Lursmanashvili and M. Devidze. 2005. Phase synchronization of slip in laboratory slider system. Nonlinear Processes in Geophysics, 12, 1–8

    Article  Google Scholar 

  • Chelidze, T., O. Lursmanashvili, T. Matcharashvili and M. Devidze. 2006. Triggering and synchronization of stick slip: waiting times and frequency-energy distribution Tectonophysics, 424, 139–155

    Google Scholar 

  • Chelidze T., and T. Matcharashvili. 2007. Complexity of seismic process, measuring and applications – A review, Tectonophysics, 431, 49–61.

    Article  Google Scholar 

  • Chelidze, T. Matcharashvili, O. Lursmanashvili, N. Varamashvili. 2008. Acoustics of stick-slip deformation under external forcing: the model of seismic process synchronization. In: Advanced Topics in Geology and Seismology. D. Triantis, M. Jelenska, F. Vallianatos (Eds). University of Cambridge, WSEAS Press. pp:36–43.

    Google Scholar 

  • T. Chelidze, O. Lursmanashvili, T. Matcharashvili, N.Varamashvili N. Zhukova, E. Mepharidze. 2009. High order synchronization of stick-slip process: experiments on spring-slider system. Nonlinear Dynamics, DOI 10.1007/s11071-009-9536-6

    Google Scholar 

  • Chernyak, G. 1978. On the physical nature of seismoelectric effect in rocks. Izvestia Ac. Sci. USSR, Physics of Earth. N2, 108–112, (in Russian).

    Google Scholar 

  • Dieterich, J.H. 1979. Modeling of rock friction 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84B, 2161–2168.

    Article  Google Scholar 

  • Ditto, W.L., Rauseo, S.N. and Spano, M.L. 1990. Experimental control of chaos. Phys. Rev. Lett., 65, 3211–3214.

    Article  Google Scholar 

  • Grasso, J-R and D. Sornette. 1998 Testing self-organized criticality by induced seismicity. Jour. Geoph.Res., 103, 29 965–29 987.

    Google Scholar 

  • Heaton T. H. 1975. Tidal Triggering of earthquakes. Geoph.J. of the Royal Astr. Soc., 43, p. 307–326.

    Article  Google Scholar 

  • Kanamori, H., and E.E. Brodsky. 2004. The physics of earthquakes. Rep. Prog. Phys., 67, 1429–1496.

    Article  Google Scholar 

  • Kantz, H., Schreiber T., 1997. Nonlinear time series analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kurz, J., CU. Grosse, HW Reinhardtet. 2005. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete, Ultrasonics, 43, 538–546

    Article  Google Scholar 

  • Lursmanashvili O. 2001. Role of exogenous factors in initiation of Caucasus Earthquakes Journal of the Georgian Geophysical Society, Issue (A), Physics of Solid Earth, v. 6, pp. 22–27.

    Google Scholar 

  • Maeda, 1985. A method for reading and checking phase times in autoprocessing system of seismic wave data, J. Seismology Soc. Japan. 38, 365–379.

    Google Scholar 

  • Marwan, M. 2003.Encounters with neighborhood, Ph.D Thesis.

    Google Scholar 

  • Nikolaev, A.V. (Ed.). 1994. Induced Seismicity. Moscow, “Nauka”, 220 p, (in Russian).

    Google Scholar 

  • Nikolaev, V. A. 2003. Research of lithospheric stress state on the base of correlation of tidal forces and seismicity. Anakharsys, Moscow (in Russian).

    Google Scholar 

  • Ott, E., Grebogi, C., Yorke, J.A. 1990. Controlling chaos. Phys.Rev.Lett., 64, 1196–1199.

    Article  Google Scholar 

  • Perfettini H., J. Schmittbuhl and J.R. Rice. 2001. Frictional response induced by time-dependent fluctuations of the normal loading. Journal of Geophysical Research, 106B, 13455–13472

    Article  Google Scholar 

  • Pikovsky, A., Rosenblum, M.G., Kurths. J. 2003. Synchronization: Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rice J. R., N. Lapusta and K. Ranjith. 2001. Rate and state dependent friction and the stability sliding between elastically deformable solids. Journal of the Mechanics and Physics of Solids, 49, 1865–1898

    Article  Google Scholar 

  • Rosenblum, M.G., Pikovsky, A., Kurths. J. 1996. Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76, 1804–1808.

    Article  Google Scholar 

  • Rosenblum, M.G., Pikovsky, A., Kurths. J. 1997. Effect of phase synchronization in driven chaotic oscillators. IEEE Trans. CAS-I, 44. 874–881.

    Article  Google Scholar 

  • Ruina A. 1983. Slip instability and state variable friction laws. Journal of Geophysical Research, 88B, 10359–10370

    Article  Google Scholar 

  • Quiroga, R., R Quian Quiroga, A Kraskov, T Kreuz, P Grassberger. 2002. Performance of different synchronization measures in real data, Phys.rev.E, 65, 041903.

    Article  Google Scholar 

  • Scholz, C. (1990): The mechanics of earthquakes and faulting (Cambridge Univ. Press. Cambridge.1990)

    Google Scholar 

  • Sobolev, G., A. Ponomarev, A.Avagimov, V. Zeigarnik. (2000): Initiating acoustic emission with electric actions. In Reports of ESC conference, Madrid.

    Google Scholar 

  • Sobolev, G.A. and Ponomarev, A.V., 2003. Physics of Earthquakes and Precursors. Moscow, “Nauka”, (in Russian).

    Google Scholar 

  • Scholz C. H. 1998. Earthquakes and friction laws. Nature, 391, 37–42

    Article  Google Scholar 

  • Scholz, C.H. 2003. Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sibson R. 1994. Crustal stress, faulting and fluid flow. In: Deformation and Fluid Flow Geological Society, London, Special Publications; 1994; v. 78; p. 69–84

    Google Scholar 

  • Tamm, I. 1956. Fundamentals of theory of electricity. Moscow (in Russian).

    Google Scholar 

  • Tarasov, N., H. Tarasova, A. Avagimov and V. Zeigarnik (1999), The effect of high-power electromagnetic pulses on the seismicity of Central Asia and Kazakhstan. Volcanology and Seismology (Moscow), N4-5, 152–160 (in Russian).

    Google Scholar 

  • Varamashvili, N., T. Chelidze, O. Lursmanashvili. 2008. Phase synchronization of slips by periodical (tangential and normal) mechanical forcing in the spring-slider model. Acta Geophysica, 56, 357–371.

    Article  Google Scholar 

  • Zbilut, J.P., Webber, C.L. Jr., 1992, Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171, 199–203

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Georgian National Science Foundation (Grant No №GNSF/ST06/5-028) and INTAS foundation (Ref. N№ 05-100008-7889) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chelidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chelidze, T., Matcharashvili, T., Lursmanashvili, O., Varamashvili, N., Zhukova, N., Meparidze, E. (2010). Triggering and Synchronization of Stick-Slip: Experiments on Spring-Slider System. In: de Rubeis, V., Czechowski, Z., Teisseyre, R. (eds) Synchronization and Triggering: from Fracture to Earthquake Processes. Geoplanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12300-9_8

Download citation

Publish with us

Policies and ethics