Advertisement

Weighted Map for Reflectance and Shading Separation Using a Single Image

  • Sung-Hsien Hsieh
  • Chih-Wei Fang
  • Te-Hsun Wang
  • Chien-Hung Chu
  • Jenn-Jier James Lien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5996)

Abstract

In real world, a scene is composed by many characteristics. Intrinsic images represent these characteristics by two components, reflectance (the albedo of each point) and shading (the illumination of each point). Because reflectance images are invariant under different illumination conditions, they are more appropriate for some vision applications, such as recognition, detection. We develop the system to separate them from a single image. Firstly, a presented method, called Weighted-Map Method, is used to separate reflectance and shading. A weighted map is created by first transforming original color domain into new color domain and then extracting some useful property. Secondly, we build Markov Random Fields and use Belief Propagation to propagate local information in order to help us correct misclassifications from neighbors. According to our experimental results, our system can apply to not only real images but also synthesized images.

Keywords

Intrinsic Image Reflectance Shading Weighted Map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrow, H.G., Tenebaum, J.M.: Recovering Intrinsic Scene Characteristics from Images. Computer Vision Systems, 3–26 (1978)Google Scholar
  2. 2.
    Chang, S.L., Chen, L.S., Chung, Y.C., Chen, S.W.: Automatic license plate recognition. IEEE Trans. on ITS 5(1), 42–54 (2004)Google Scholar
  3. 3.
    Funt, B.V., Drew, M.S., Brokington, M.: Recovering Shading from Color Images. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 124–132. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Fang, C., Chen, S.W., Fuh, C.S.: Automatic Change Detection of Driving Environments in a Vision-Based Driver Assistance System. IEEE Trans. on NN 14(3), 646–657 (2003)Google Scholar
  5. 5.
    Finlayson, G.D., Hordley, S.D.: Color Constancy at a Pixel. J. of the Optical Society of America 18(2), 253–264 (2001)CrossRefGoogle Scholar
  6. 6.
    Finlayson, G.D., Hordley, S.D., Cheng, L., Drew, M.S.: On the Removal of Shadows form Images. IEEE Trans. on PAMI 28(1), 59–68 (2006)Google Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Computer and System Sciences 55(1), 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kingdom, F.A.A., Rangwala, S., Hammmamji: Chromatic Properties of the Color Shading Effect. Vision Research, 1425–1437 (2005)Google Scholar
  9. 9.
    Leung, T., Malik, J.: Recognizing Surfaces Using Three-Dimensional Taxons. In: IEEE ICCV, pp. 1010–1017 (1999)Google Scholar
  10. 10.
    Matsushita, Y., Nishino, K., Ikeuchi, K., Sakauchi, M.: Illumination Normalization with Time-Dependent Intrinsic Images for Video Surveillance. In: Proc. 2003 CVPR, vol. 1, pp. 3–10 (2003)Google Scholar
  11. 11.
    Olshausen, B.A., Field, D.J.: Emergence of Simple Cell Receptive Field Properties by Learning a Sparse Code for Natural Images, 607–608 (1996)Google Scholar
  12. 12.
    Simoncelli, E.P.: Statistical models for images: compression, restoration and synthesis. In: Asilomar Conference on Signals, Systems and Computers, pp. 673–678 (1997)Google Scholar
  13. 13.
    Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering Intrinsic Images from a Single Image. IEEE Trans. on PAMI 27(9), 1459–1472 (2005)Google Scholar
  14. 14.
    Tsai, Y.T., Lien, J.J.: Efficient Object Segmentation Using Digital Matting for MPEG Video Sequences. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 591–601. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Weiss, Y.: Deriving Intrinsic Images from Image Sequences. In: IEEE ICCV, pp. 68–75 (2001)Google Scholar
  16. 16.
    Yedidia, J., Freeman, W.T., Weiss, Y.: Understanding Belief Propagation and its Generalizations. MITSUBISHI Electric Research Lab. TR-2001-22 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sung-Hsien Hsieh
    • 1
  • Chih-Wei Fang
    • 1
  • Te-Hsun Wang
    • 1
  • Chien-Hung Chu
    • 1
  • Jenn-Jier James Lien
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTaiwan, R.O.C.

Personalised recommendations