Skip to main content

Scalable Image Retrieval Based on Feature Forest

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Abstract

Vocabulary tree-based method is one of the most popular methods for content-based image retrieval due to its efficiency and effectiveness. However, for existing vocabulary tree methods, the retrieval precision in large scale image database has never been acceptable especially for image datasets with high variations. In this paper, we propose a novel tree fusion framework: Feature Forest, utilizing and fusing different kind of local visual descriptors to achieve a better retrieval performance. In the offline-learning stage, our framework first establishes different feature vocabulary trees based on different features and uses the average covariance to build vocabulary tree adaptively. In the online-query stage, we use the ratio of the resulting score to the standard score to fuse retrieval results of each vocabulary tree adaptively. The evaluations show the effectiveness of our approach compared with single vocabulary-tree based methods on different databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leibe, B., Schiele, B.: Analyzing contour and appearance based methods for object categorization. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2003)

    Google Scholar 

  2. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: IEEE Computer Vision and Pattern Recognition, CVPR (2006)

    Google Scholar 

  3. Frauendorfer, F., Wu, C., Frahm, J.-M., Pollefeys, M.: Visual Word based Location Recognition in 3D models using Distance Augmented Weighting. In: 3D Data Processing Visualization and Transmission(3DPVT) (2008)

    Google Scholar 

  4. Siggelkow, S.: Feature histograms for content-based image retrieval, Ph.D. dissertation Freiburg, Germany: Univ. Freiburg, Dept. Computer Sci. (2002)

    Google Scholar 

  5. Nister, D., Stewenius, H.: Scalable Recognition with a Vocabulary Tree. In: IEEE Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, pp. 2161–2168 (2006)

    Google Scholar 

  6. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: International Conference on Computer Vision, ICCV (2003)

    Google Scholar 

  7. Grauman, K., Darrell, T.: Approximate correspondences in high dimensions. In: Advances in Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  8. Adaptive Vocabulary Forests for Dynamic Indexing and Category Learning. In: International Conference on Computer Vision, ICCV (2007)

    Google Scholar 

  9. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.: A Comparison of Affine Region Detectors. International Journal of Computer Vision (IJCV) (2005)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  11. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the Multiple-Instance Problem with Axis-Parallel Rectangles. Artificial Intelligence Journal 89 (1997)

    Google Scholar 

  13. Maron, O., Ratan, A.: A framework for multiple-instance learning. In: Neural Information Processing Systems (NIPS), p. 10

    Google Scholar 

  14. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. Communications of the ACM 51, 117–122 (2008)

    Article  Google Scholar 

  15. Andoni, A., Datar, M., Immorlica, N.: Locality-Sensitive Hashing Scheme Based on p-Stable Distributions. MIT Press, Cambridge (2006)

    Google Scholar 

  16. http://people.csail.mit.edu/tomyeh/homepage/software/index.html

  17. http://www.vis.uky.edu/~stewe/ukbench/

  18. http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, J., Ma, Y., Hu, F., Zhao, Y., Lao, S. (2010). Scalable Image Retrieval Based on Feature Forest. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics