Advertisement

Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences

  • Hongwei Zheng
  • Ioan Cleju
  • Dietmar Saupe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5996)

Abstract

Intensity based registration methods, such as the mutual information (MI), do not commonly consider the spatial geometric information and the initial correspondences are uncertainty. In this paper, we present a novel approach for achieving highly-automatic 2D/3D image registration integrating the advantages from both entropy MI and spatial geometric features correspondence methods. Inspired by the scale space theory, we project the surfaces on a 3D model to 2D normal image spaces provided that it can extract both local geodesic feature descriptors and global spatial information for estimating initial correspondences for image-to-image and image-to-model registration. The multiple 2D/3D image registration can then be further refined using MI. The maximization of MI is effectively achieved using global stochastic optimization. To verify the feasibility, we have registered various artistic 3D models with different structures and textures. The high-quality results show that the proposed approach is highly-automatic and reliable.

Keywords

Image Registration Geodesic Distance Projective Transformation Epipolar Line Feature Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witkin, A.P.: Scale-space filtering. In: Proc. Int. Joint Conf. Artif. Intell., IJCAI Karlsruhe, pp. 1019–1021 (1983)Google Scholar
  2. 2.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: IEEE Eleventh International Conference on Computer Vision (2007)Google Scholar
  4. 4.
    Viola, P.A.: Alignment by maximization of mutual information. Technical Report AITR-1548 (1995)Google Scholar
  5. 5.
    Cleju, I., Saupe, D.: Stochastic optimization of multiple texture registration using mutual information. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 517–526. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Lensch, P., Heidrich, W., Seidel, H.P.: Automated texture registration and stitching for real world models. In: Pacific Graphics (2000)Google Scholar
  7. 7.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey, pp. 157–186. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Yoshizawa, S., Belyaev, A., Seidel, H.-P.: A fast and simple stretch-minimizing mesh parametrization. In: Int. Conf. on Shape Modeling and Applications (2004)Google Scholar
  9. 9.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: ACM SIGGRAPH 1995, pp. 173–182 (1995)Google Scholar
  10. 10.
    Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogrammetry Remote Sensing 26(3), 150–166 (1986)Google Scholar
  11. 11.
    Duda, R.O., Hart, P.E.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)Google Scholar
  12. 12.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  13. 13.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  14. 14.
    Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Journal of Image and Vision Computing 15(1), 59–76 (1997)CrossRefGoogle Scholar
  15. 15.
    Taylor, C.J., Kriegman, D.J.: Minimization on the lie group SO(3) and related manifolds. Technical report, Dept. of E.E. Yale University (1994)Google Scholar
  16. 16.
    Rodehorst, V., Hellwich, O.: Genetic algorithm sample consensus (GASAC) - a parallel strategy for estimation. In: 25 Years of RANSAC in CVPR (2006)Google Scholar
  17. 17.
    Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A stochastic iterative closest point algorithm. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 762. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Nishino, K., Sato, Y., Ikeuchi, K.: Appearance compression and synthesis based on 3D model for mixed reality. In: IEEE Int. Conf. Computer Vision, pp. 38–45 (1999)Google Scholar
  19. 19.
    Jank, Z., Chetverikov, D.: Photo-consistency based registration of an uncalibrated image-pair to a 3D model using genetic algorithm. In: 3DPVT, pp. 616–622 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hongwei Zheng
    • 1
  • Ioan Cleju
    • 1
  • Dietmar Saupe
    • 1
  1. 1.Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations