Advertisement

Learning Bundle Manifold by Double Neighborhood Graphs

  • Chun-guang Li
  • Jun Guo
  • Hong-gang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5996)

Abstract

In this paper, instead of the ordinary manifold assumption, we introduced the bundle manifold assumption that imagines data points lie on a bundle manifold. Under this assumption, we proposed an unsupervised algorithm, named as Bundle Manifold Embedding (BME), to embed the bundle manifold into low dimensional space. In BME, we construct two neighborhood graphs that one is used to model the global metric structure in local neighborhood and the other is used to provide the information of subtle structure, and then apply the spectral graph method to obtain the low-dimensional embedding. Incorporating some prior information, it is possible to find the subtle structures on bundle manifold in an unsupervised manner. Experiments conducted on benchmark datasets demonstrated the feasibility of the proposed BME algorithm, and the difference compared with ISOMAP, LLE and Laplacian Eigenmaps.

Keywords

Orbit Structure Neighborhood Graph Manifold Learning Nonlinear Dimensionality Reduction Unsupervised Manner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  2. 2.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  3. 3.
    Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100(10), 5591–5596 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brand, M.: Charting a manifold. In: NIPS, vol. 15. MIT Press, Cambridge (2003)Google Scholar
  7. 7.
    Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction by local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Weinberger, K., Packer, B., Saul, L.: Unsupervised learning of image manifolds by semidefinite programming. In: CVPR 2004, vol. 2, pp. 988–995 (2004)Google Scholar
  9. 9.
    Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. of the Natl. Academy of Sciences 102, 7426–7431 (2005)CrossRefGoogle Scholar
  10. 10.
    Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Machine Learning 56(1-3), 209–239 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Transactions on Knowledge and Data Engineering 20(1), 55–67 (2008)CrossRefGoogle Scholar
  12. 12.
    Rao, R., Ruderman, D.: Learning lie groups for invariant visual perception. In: NIPS, vol. 11. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Ham, J., Lee, D., Saul, L.: Semisupervised alignment of manifolds. In: AI & STAT, pp. 120–127 (2005)Google Scholar
  14. 14.
    Lim, J., Ho, J., Yang, M.-H., Lee, K.-C., Kriegman, D.J.: Image clustering with metric, local linear structure and affine symmetry. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 456–468. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Hamm, J., Lee, D.D.: Separating pose and expression in face images: A manifold learning approach. Neural Information Processing – Reviews and Letters 11, 91–100 (2007)Google Scholar
  16. 16.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical Report CUCS-005-96, Columbia University (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chun-guang Li
    • 1
  • Jun Guo
    • 1
  • Hong-gang Zhang
    • 1
  1. 1.PRIS lab., School of Information and Communication EngineeringBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations