Skip to main content

Passivity-Preserving Balanced Truncation Model Reduction of Circuit Equations

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2008

Part of the book series: Mathematics in Industry ((TECMI,volume 14))

Abstract

We consider passivity-preserving model reduction of circuit equations using the bounded real balanced truncation method applied to a Moebius-transformed system. This method is based on balancing the solutions of the projected Lur’e or Riccati matrix equations. We also discuss their numerical solution exploiting the underlying structure of circuit equations. A numerical example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reis, T.: Circuit synthesis of passive descriptor systems - a modified nodal approach. Internat. J. Circuit Theory Appl. (to appear)

    Google Scholar 

  2. Anderson, B., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs, NJ (1973)

    Google Scholar 

  3. Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Computer-Aided Design Integr. Circuit Syst. 14, 639–649 (1995)

    Article  Google Scholar 

  4. Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 17(8), 645–654 (1998)

    Article  Google Scholar 

  5. Antoulas, A.: A new result on passivity preserving model reduction. Systems Control Lett. 54(4), 361–374 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Systems Control Lett. 54(4), 347–360 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Freund, R.: SPRIM: structure-preserving reduced-order interconnect macromodeling. In: Technical Digest of the 2004 IEEE/ACM International Conference on Computer-Aided Design, pp. 80–87. IEEE Computer Society Press, Los Alamos, CA (2004)

    Google Scholar 

  8. Freund, R., Feldmann, P.: The SyMPVL algorithm and its applications in interconnect simulation. In: Proceedings of the 1997 International Conference on Simulation of Semiconductor Processes and Devices, pp. 113–116. IEEE, New York (1997)

    Google Scholar 

  9. Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Internat. J. Control 77(8), 748–766 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26(1), 17–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Reis, T., Stykel, T.: Passive and bounded real balancing for model reduction of descriptor systems. Preprint 25-2008, Institut für Mathematik, TU Berlin (2008)

    Google Scholar 

  12. Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signals Systems 16, 297–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reis, T., Stykel, T.: Passivity-preserving balanced truncation for electrical circuits. Preprint 32-2008, Institut für Mathematik, TU Berlin (2008).

    Google Scholar 

  14. Ionescu, V., Oară, C., Weiss M.: Generalized Riccati Theory and Robust Control: A Popov Function Approach. John Wiley and Sons, Chichester, UK (1999)

    Google Scholar 

  15. Benner, P.: Numerical solution of special algebraic Riccati equations via exact line search method. In: Proceedings of the European Control Conference (ECC97), Paper 786. BELWARE Information Technology, Waterloo, Belgium (1997)

    Google Scholar 

  16. Varga, A.: On computing high accuracy solutions of a class of Riccati equations. Control Theory Adv. Techn. 10, 2005–2016 (1995)

    Google Scholar 

  17. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Efficient numerical algorithms for balanced stochastic truncation. Internat. J. Appl. Math. Comput. Sci. 11(5), 1123–1150 (2001)

    Google Scholar 

  18. Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd ed. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA (1996)

    MATH  Google Scholar 

  21. März, R.: Canonical projectors for linear differential algebraic equations. Comput. Math. Appl. 31(4/5), 121–135 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Stykel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stykel, T., Reis, T. (2010). Passivity-Preserving Balanced Truncation Model Reduction of Circuit Equations. In: Roos, J., Costa, L. (eds) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry(), vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12294-1_59

Download citation

Publish with us

Policies and ethics