Sources and Distributions of Polycyclic Aromatic Hydrocarbons and Toxicity of Polluted Atmosphere Aerosols

  • Gerhard LammelEmail author
  • Jiří Novák
  • Linda Landlová
  • Alice Dvorská
  • Jana Klánová
  • Pavel Čupr
  • Jiří Kohoutek
  • Eberhard Reimer
  • Lenka Škrdlíková
Part of the Environmental Science and Engineering book series (ESE)


Levels and sources, mass size and phase distributions of parent PAHs and the toxicity of ambient aerosols at urban and rural sites of central (Czech Republic) and south-eastern (Bosnia and Hercegovina) Europe, from 2006 to 2008, are investigated. PAH pollution levels are much higher in winter than in summer, obviously due to the seasonalities of emission strength, photochemical degradation and mixing. The levels are in the range of 10–100 ng m−3 at urban and rural sites, while strong concentration gradients exist towards background sites, in particular in summer, due to both dispersion and degradation during transport. Based on back-trajectory analysis of air masses travelling to a background site in the Czech Republic, regionally significant PAH source areas were localized in eastern and south-eastern Europe, while western European countries emit less. PAHs represent a mass fraction of ≈100–500 ppm of the inhalable particulate matter (i.e. <10 μm). Based on a size resolution of 6 fractions, unimodal PAH mass size distributions were found at urban and rural sites which peaked almost exclusively in the accumulation mode (0.1–1.0 μm). Mass median diameters were found higher for semivolatile PAHs than for non volatile PAHs, probably related to re-distribution of semivolatiles in the aerosol according to the surface size distribution. Genotoxicity and AhR-mediated (i.e. dioxin-like) activity were found in all size classes at urban and rural sites in similar magnitudes. Activities were found in general highest in the fine particulate matter (i.e. <1 μm). All biological effects tested were also found in extracts of the gas-phase. PAH TEQ and antiandrogenicity were even mostly associated with gaseous pollutants. The calculated TEQ mediated by parent PAHs corresponded by average to 7.5 and 95% of the dioxin-like activity in the particulate and gaseous fractions, respectively.


Urban Site Total Suspended Particulate Rural Site Accumulation Mode Background Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Milan Vana (Czech Hydrometeorological Institute), Zoran Bořović, Igor Kovacić (Hydrometeorological Service of Bosnia and Hercegovina), Jaromir Dostálek (Masaryk University), Bojan Gasić (Swiss Federal Institute of Technology) and Ludwig Ries (German Federal Environment Agency) for on-site support. This project was supported by the Ministry of Environment (SP/1a3/29/07) and the Ministry of Education (MSMT 0021622412) of the Czech Republic and by the European Commission (7th FWP R&D 226534, ArcRisk).


  1. Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo JL (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys—Part 1. Concentrations, sources and gas/particle partitioning. Atmos Environ 42:43–54CrossRefGoogle Scholar
  2. Balasubramanian R, He J (2010) Fate and transfer of persistent organic pollutants in a multi-media environment. In: Zereini F, Wiseman CLS (eds) Urban airborne particulate matter: origins, chemistry, fate and health impacts. Springer, HeidelbergGoogle Scholar
  3. Bozlaker A, Muezzinoglu A, Odabasi M (2008) Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J Hazard Mater 153:1093–1102CrossRefGoogle Scholar
  4. Brown LE, Trought KR, Bailey CI, Clemons JH (2005) 2,3,7,8-TCDD equivalence and mutagenic activity associated with PM10 from three urban locations in New Zealand. Sci Total Environ 349:161–174CrossRefGoogle Scholar
  5. Chao MR, Hu CW, Ma HW, Chang-Chien GP, Lee WJ, Chang LW, Wu KY (2003) Size distribution of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of a municipal incinerator. Atmos Environ 37:4945–4954CrossRefGoogle Scholar
  6. Chrysikou LP, Gemenetzis PG, Samara CA (2009) Wintertime size distributions of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCPs) in the urban environment: street- vs. rooftop-level measurements. Atmos Environ 43:290–300CrossRefGoogle Scholar
  7. Ciganek M, Neca J, Adamec V, Janosek J, Machala M (2004) A combined chemical and bioassay analysis of traffic-emitted polycyclic aromatic hydrocarbons. Sci Total Environ 334–335:141–148CrossRefGoogle Scholar
  8. Claxton LD, Woodall GM (2007) A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res Rev Mutat Res 636:36–94CrossRefGoogle Scholar
  9. Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res Rev Mutat Res 567:347–399CrossRefGoogle Scholar
  10. Clemons JH, Allan LM, Marvin CH, Wu Z, McCarry BE, Bryant DW, Zacharewski TR (1998) Evidence of estrogen- and TCDD-like activities in crude and fractionated extracts of PM10 air particulate material using in vitro gene expression assays. Environ Sci Technol 32:1853–1860CrossRefGoogle Scholar
  11. Dachs J, Eisenreich SJ (2000) Adsorption onto aerosol soot carbon dominates gas–particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 34:3690–3697CrossRefGoogle Scholar
  12. de Kok T, Driece HAL, Hogervorst JGF, Briede JJ (2006) Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat Res Rev Mutat Res 613:103–122CrossRefGoogle Scholar
  13. Demirpence E, Duchesne MJ, Badia E, Gagne D, Pons M (1993) Mvln cells—a bioluminescent mcf-7-derived cell-line to study the modulation of estrogenic activity. J Steroid Biochem Mol Biol 46:355–364CrossRefGoogle Scholar
  14. EC PAH WG (2001) European Commission Polycyclic Aromatic Compounds Working Group: ambient air pollution by polycyclic aromatic compounds (PAHs)—position paper. European Commission, BrusselsGoogle Scholar
  15. Fernández P, Grimalt JO, Vilanova RM (2002) Atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ Sci Technol 36:1162–1168CrossRefGoogle Scholar
  16. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments, application. Academic Press, San DiegoGoogle Scholar
  17. Grynkiewicz Bylina B, Rakwic B, Pastuszka JS (2005) Assessment of exposure to traffic-related aerosol and to particle-associated PAHs in Gliwice, Poland. Pol J Environ Stud 14:117–123Google Scholar
  18. Herrmann H, Brüggemann E, Franck U, Gnauk T, Löschau G, Müller K, Plewka A, Spindler G (2006) A source study of PM in Saxony by size-segregated characterisation. J Atmos Chem 55:103–130CrossRefGoogle Scholar
  19. Hilscherová K, Jones PD, Kannan K, Machala M, Giesy JP (2002) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Pollut Bull 45:3–16CrossRefGoogle Scholar
  20. Hippelein M, McLachlan MS (1998) Soil/air partitioning of semivolatile organic compounds. 1. Method development and influence of physical–chemical properties. Environ Sci Technol 32:310–316CrossRefGoogle Scholar
  21. Holoubek I, Klánová J, Jarkovský J, Kohoutek J (2007) Trends in background levels of persistent organic pollutants at Košetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1988-2005. J Environ Monit 9:557–563CrossRefGoogle Scholar
  22. Jaffrezo JL, Clain MP, Masclet P (1994) Polycyclic aromatic hydrocarbons in the polar ice of Greenland—geochemical use of these atmospheric tracers. Atmos Environ 28:1139–1145CrossRefGoogle Scholar
  23. Kamens RM, Guo Z, Fulcher JN, Bell DA (1988) The influence of humidity, sunlight, and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 22:103–108CrossRefGoogle Scholar
  24. Kawanaka Y, Tsuchiya Y, Yun SJ, Sakamoto K (2009) Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition. Environ Sci Technol 43 (in press)Google Scholar
  25. Kiss G, Varga-Puchony Z, Hlavaj Z (1996) Distribution of polycyclic aromatic hydrocarbons on atmospheric aerosol particles of different size. In: Kulmala M, Wagner PO (eds) Nucleation and atmospheric aerosols 1996. Elsevier, Kidlington, pp 501–503CrossRefGoogle Scholar
  26. Klein GP, Hodge EM, Diamond ML, Yip A, Dann T, Stem G, Denison MS, Harper PA (2006) Gas-phase ambient air contaminants exhibit significant dioxin-like and estrogen-like activity in vitro. Environ Health Perspect 114:697–703CrossRefGoogle Scholar
  27. Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K (2004) Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect 112:524–531CrossRefGoogle Scholar
  28. Lammel G, Brüggemann E, Gnauk T, Müller K, Neusüss C, Röhrl A (2003) A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J Aerosol Sci 34:1–25CrossRefGoogle Scholar
  29. Lammel G, Sehili AM, Bond TC, Feichter J, Grassl H (2009a) Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—a modelling approach. Chemosphere 76:98–106CrossRefGoogle Scholar
  30. Lammel G, Klánová J, Kohoutek J, Prokeš R, Ries L, Stohl A (2009b) Observation and origin of organochlorine pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the free troposphere over central Europe. Environ Pollut 157:3264–3271CrossRefGoogle Scholar
  31. Leskinen P, Michelini E, Picard D, Karp M, Virta M (2005) Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61:259–266CrossRefGoogle Scholar
  32. Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parameterization for modelling. Environ Sci Technol 38:3793–3803CrossRefGoogle Scholar
  33. Lohmann R, Northcott GL, Jones KC (2000) Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the UK atmosphere. Environ Sci Technol 34:2895–2899Google Scholar
  34. López Cancio JA, Vera Castellano A, Santana Martín S, Santana Rodríguez JF (2004) Size distributions of PAHs in ambient air particles of two areas of Las Palmas de Gran Canaria. Water Air Soil Pollut 154:127–138CrossRefGoogle Scholar
  35. Machala M, Vondráček J, Bláha L, Cigánek M, Neča J (2001) Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res Genet Toxicol Environ Mutagen 497:49–62CrossRefGoogle Scholar
  36. Misaki K, Kawami H, Tanaka T, Handa Y, Nakamura M, Matsui S, Matsuda T (2007) Aryl hydrocarbon receptor ligand activity of polycyclic aromatic ketones and polycyclic aromatic quinones. Environ Toxicol Chem 26:1370–1379CrossRefGoogle Scholar
  37. Mukerjee D (1998) Health impact of polychlorinated dibenzo-p-dioxins: a critical review. J Air Waste Manage Assoc 48:157–165CrossRefGoogle Scholar
  38. Novák J, Jálová V, Giesy JP, Hilscherová K (2009) Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro. Environ Int 35:43–49CrossRefGoogle Scholar
  39. Okamura K, Kizu R, Hayakawa K, Toriba A, Mizokami A, Burnstein KL, Klinge CM, Kato S (2004) Variation in the antiandrogenic activity of diesel exhaust particulates emitted under different engine loads. Polycycl Aromat Compd 24:743–757CrossRefGoogle Scholar
  40. Owens CV, Lambright C, Cardon M, Gray LE, Gullett BK, Wilson VS (2006) Detection of androgenic activity in emissions from diesel fuel and biomass combustion. Environ Toxicol Chem 25:2123–2131CrossRefGoogle Scholar
  41. Pankow JF, Bidleman TF (1991) Effects of temperature, TSP and percent non-exchangeable material in determining the gas-particle partitioning of organic compounds. Atmos Environ 25A:2241–2249Google Scholar
  42. Perraudin E, Budzinski H, Villenave E (2007) Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J Atmos Chem 56:57–82CrossRefGoogle Scholar
  43. Plewka A (2001) Untersuchungen zum Anteil mittelflüchtiger organischer Verbindungen im urbanen troposphärischen Aerosol. PhD thesis, University of Leipzig, Germany, 135 ppGoogle Scholar
  44. Pöschl U, Letzel T, Schauer C, Niessner R (2001) Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J Phys Chem A 105:4029–4041CrossRefGoogle Scholar
  45. Possanzini M, di Palo V, Gigliucci P, Tomasi Scianò MC, Cecinato A (2004) Determination of phase-distributed PAH in Rome ambient air by denuder/GC-MS method. Atmos Environ 38:1727–1734CrossRefGoogle Scholar
  46. Prevedouros K, Jones KC, Sweetman AJ (2005) Modelling the fate and seasonality of polycyclic aromatic hydrocarbons in the United Kingdom atmosphere. Chemosphere 56:195–208CrossRefGoogle Scholar
  47. Quillardet P, Hofnung M (1993) The SOS chromotest—a review. Mutat Res 297:235–279CrossRefGoogle Scholar
  48. Radonić J, Turk Sekulić M, Vojinović Miloradov M, Čupr P, Klánová J (2009) Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts. Environ Sci Pollut Res 16:65–72CrossRefGoogle Scholar
  49. Ramdahl T (1983) Retene—a molecular marker of wood combustion in ambient air. Nature 306:580–482CrossRefGoogle Scholar
  50. Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E, Bleux N, Berghmans P, van Grieken R (2006) Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785CrossRefGoogle Scholar
  51. Reimer E, Scherer B (1992) An operational meteorological diagnostic system for regional air pollution analysis and long term modeling. In: van Dop H, Kallos G (eds) Air pollution modelling and its application IX. Plenum Press, New York, pp 565–572CrossRefGoogle Scholar
  52. Rosenkranz HS (1982) Direct-acting mutagens in diesel exhausts—magnitude of the problem. Mutat Res 101:1–10CrossRefGoogle Scholar
  53. Safe S, Wormke M (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor a cross-talk and mechanisms of action. Chem Res Toxicol 16:807–816CrossRefGoogle Scholar
  54. Schauer C, Niessner R, Pöschl U (2003) Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends, chemical degradation, and sampling artefacts. Environ Sci Technol 37:2861–2868CrossRefGoogle Scholar
  55. Schnelle J, Jansch J, Wolf K, Gebefugi I, Kettrup A (1995) Particle size dependent concentrations of polycyclic aromatic hydrocarbons (PAH) in the outdoor air. Chemosphere 31:3119–3127CrossRefGoogle Scholar
  56. Sehili AM, Lammel G (2007) Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmos Environ 41:8301–8315CrossRefGoogle Scholar
  57. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955CrossRefGoogle Scholar
  58. Škarek M, Janošek J, Čupr P, Kohoutek J, Novotná-Rychetská A, Holoubek I (2007) Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environ Int 33:859–866CrossRefGoogle Scholar
  59. Söderström H, Hajšlová J, Kocourek V, Siegmund B, Kocan A, Obiedzinski MW, Tysklind M, Bergqvist PA (2005) PAHs and nitrated PAHs in air of five European countries determined using SPMDs as passive samplers. Atmos Environ 39:1627–1640Google Scholar
  60. Stohl A, Hittenberger M, Wotawa G (1998) Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiments. Atmos Environ 32:4245–4264CrossRefGoogle Scholar
  61. Taneda S, Mori Y, Kamata K, Hayashi H, Furuta C, Li CM, Seki KI, Sakushima A, Yoshino S, Yamaki K, Watanabe G, Taya K, Suzuki AK (2004) Estrogenic and anti-androgenic activity of nitrophenols in diesel exhaust particles (DEP). Biol Pharm Bull 27:835–837CrossRefGoogle Scholar
  62. ten Hulscher TEM, Velde LEVD, Brueggeman WA (1992) Temperature dependence of Henry’s law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environ Toxicol Chem 11:1595–1603CrossRefGoogle Scholar
  63. Tsapakis M, Stephanou EG (2003) Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos Environ 37:4935–4944CrossRefGoogle Scholar
  64. Tsapakis M, Stephanou EG (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147–156CrossRefGoogle Scholar
  65. Ueng TH, Wang HW, Huang YP, Hung CC (2004) Antiestrogenic effects of motorcycle exhaust particulate in MCF-7 human breast cancer cells and immature female rats. Arch Environ Contam Toxicol 46:454–462CrossRefGoogle Scholar
  66. USEPA (2007) EPI Suite v4.0, Exposure assessment tools and models, US Environmental Protection Agency.
  67. Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843CrossRefGoogle Scholar
  68. Wenger D, Gerecke AC, Heeb NV, Hueglin C, Seiler C, Haag R, Naegeli H, Zenobi R (2009) Aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter from an urban and a rural site in Switzerland. Atmos Environ 43:3556–3562CrossRefGoogle Scholar
  69. WHO (2003) Health risks of persistent organic pollutants from long-range transboundary air pollution. World Health Organization Regional Office for Europe, Copenhagen, 252 ppGoogle Scholar
  70. Yang HH, Tsai CH, Chao MR, Su YL, Chien SM (2006) Source identification and size distribution of atmospheric PAHs during rice straw burning period. Atmos Environ 40:1266–1274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerhard Lammel
    • 1
    • 2
    Email author
  • Jiří Novák
    • 1
  • Linda Landlová
    • 1
  • Alice Dvorská
    • 1
  • Jana Klánová
    • 1
  • Pavel Čupr
    • 1
  • Jiří Kohoutek
    • 1
  • Eberhard Reimer
    • 3
  • Lenka Škrdlíková
    • 1
  1. 1.Research Centre for Environmental Chemistry and EcotoxicologyMasaryk UniversityBrnoCzech Republic
  2. 2.Max Planck Institute for ChemistryMainzGermany
  3. 3.Institute for MeteorologyFree University of BerlinBerlinGermany

Personalised recommendations