Advertisement

Semi-volatile Organic Pollutants in the Gaseous and Particulate Phases in Urban Air

  • Hua WeiEmail author
  • An Li
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The gas-particle partitioning of semi-volatile organic compounds (SVOCs) plays an important role in the investigation of their environmental fate and long-range transport behavior. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) are three groups of SVOCs ubiquitously present in the urban atmosphere. In this chapter, their partitions between gas and particle phases in the atmosphere are reviewed and discussed. The gas-particle partition coefficient Kp of SVOCs can be predicted from their subcooled liquid vapor pressure \( \left( {{\text{P}}_{\text{L}}^{^\circ } } \right) \) or the octanol-air partition coefficient (Koa). The Junge–Pankow adsorption and Koa-based absorption models are widely used to predict the partitioning of SVOCs between gas and particulate phases. Applications of these models to PAHs, PCBs and PBDEs are presented. With the available concentration data for the SVOCs worldwide, the predictability and regression linearity of the two models are discussed.

Keywords

United States Environmental Protection Agency Total Suspended Particle Airborne Particle Absorption Model Polybrominated Diphenyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aceves M, Grimalt JO (1993) Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. Environ Sci Technol 27:2896–2908CrossRefGoogle Scholar
  2. Agrell C, ter Schure AFH, Sveder J et al (2004) Polybrominated diphenyl ethers (PBDEs) at a solid waste incineration plant I: atmospheric concentrations. Atmos Environ 38:5139–5148CrossRefGoogle Scholar
  3. Allen JO, Dookeran NM, Smith KA et al (1996) Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ Sci Technol 30:1023–1031CrossRefGoogle Scholar
  4. Allen JG, McClean MD, Stapleton HM et al (2007) Personal exposure to polybrominated diphenyl ethers (PBDEs) in residential indoor air. Environ Sci Technol 41:4574–4579CrossRefGoogle Scholar
  5. ATSDR (1995) Agency for toxic substances and disease registry. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). August 1995. http://www.atsdr.cdc.gov/toxprofiles/tp69.html#bookmark08. Accessed 20 July 2009
  6. ATSDR (2005) Toxicology profile for polyaromatic hydrocarbons. ATSDR’s toxicological profiles on CD-ROM. CRC Press, Boca RatonGoogle Scholar
  7. Bae SY, Yi SM, Kim YP (2002) Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea. Atmos Environ 36:5491–5500CrossRefGoogle Scholar
  8. Behymer TD, Hites RA (1988) Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. Environ Sci Technol 22:1311–1319CrossRefGoogle Scholar
  9. Bergman A, Athanasiadou M, Wehler EK et al (1999) Polybrominated environmental pollutants: human and wildlife exposures. Organohalogen Compd 43:89–90Google Scholar
  10. Bidleman TF (1988) Atmospheric processes. Environ Sci Technol 22:361–367CrossRefGoogle Scholar
  11. Breivik K, Sweetman A, Pacyna JM et al (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 1. Global production and consumption. Sci Total Environ 290:181–198CrossRefGoogle Scholar
  12. BSEF (2003) Major brominated flame retardants volume estimates: total market demand by region in 2001. Bromine Science and Environmental Forum, Brussels. Available from: http://www.bsef.com/docs/BFR_vols_2001.doc
  13. Cetin B, Odabasi M (2008) Atmospheric concentrations and phase partitioning of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Chemosphere 71:1067–1078CrossRefGoogle Scholar
  14. Chen S-J, Hsieh L-T, Hwang P-S (1996) Concentration, phase distribution, and size distribution of atmospheric polychlorinated biphenyls measured in southern Taiwan. Environ Int 22:411–423CrossRefGoogle Scholar
  15. Chen L-G, Mai B-X, Bi X-H et al (2006) Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. Environ Sci Technol 40:1190–1196CrossRefGoogle Scholar
  16. Chuang JC, Mack GA, Kuhlman MR et al (1991) Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study. Atmos Environ B 25:369–380CrossRefGoogle Scholar
  17. Cotham WE, Bidleman TF (1995) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan. Environ Sci Technol 29:2782–2789CrossRefGoogle Scholar
  18. Dye JA, Venier M, Zhu L et al (2007) Elevated PBDE levels in pet cats: sentinels for humans? Environ Sci Technol 41:6350–6356CrossRefGoogle Scholar
  19. Erickson MD (1997) Analytical chemistry of PCBs. Lewis Pub, Boca RatonGoogle Scholar
  20. Falconer RL, Harner T (2000) Comparison of the octanol-air partition coefficient and liquid-phase vapor pressure as descriptors for particle/gas partitioning using laboratory and field data for PCBs and PCNs. Atmos Environ 34:4043–4046CrossRefGoogle Scholar
  21. Falconer RL, Bidleman TF, Cotham WE (1995) Preferential sorption of non- and mono-ortho-polychlorinated biphenyls to urban aerosols. Environ Sci Technol 29:1666–1673CrossRefGoogle Scholar
  22. Farrar NJ, Smith KEC, Lee RGM et al (2004) Atmospheric emissions of polybrominated diphenyl ethers and other persistent organic pollutants during a major anthropogenic combustion event. Environ Sci Technol 38:1681–1685CrossRefGoogle Scholar
  23. Finizio A, Mackay D, Bidleman T et al (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31:2289–2296CrossRefGoogle Scholar
  24. Finlayson-Pitts BJ, Pitts JN Jr (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New YorkGoogle Scholar
  25. Foreman WT, Bidleman TF (1990) Semivolatile organic compounds in the ambient air of Denver, Colorado. Atmos Environ A 24:2405–2416CrossRefGoogle Scholar
  26. Goss K-U, Schwarzenbach RP (1998) Gas/solid and gas/liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants. Environ Sci Technol 32:2025–2032CrossRefGoogle Scholar
  27. Gouin T, Harner T (2003) Modelling the environmental fate of the polybrominated diphenyl ethers. Environ Int 29:717–724CrossRefGoogle Scholar
  28. Gouin T, Thomas GO, Chaemfa C et al (2006) Concentrations of decabromodiphenyl ether in air from Southern Ontario: implications for particle-bound transport. Chemosphere 64:256–261CrossRefGoogle Scholar
  29. Guo H, Lee SC, Ho KF et al (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317CrossRefGoogle Scholar
  30. Hale RC, Alaee M, Manchester-Neesvig JB et al (2003) Polybrominated diphenyl ether flame retardants in the North American environment. Environ Int 29:771–779CrossRefGoogle Scholar
  31. Harner T, Bidleman TF (1998) Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32:1494–1502CrossRefGoogle Scholar
  32. Harner T, Mackay D (1995) Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs, and DDT. Environ Sci Technol 29:1599–1606CrossRefGoogle Scholar
  33. Harner T, Shoeib M, Diamond M et al (2006) Passive sampler derived air concentrations of PBDEs along an urban–rural transect: spatial and temporal trends. Chemosphere 64:262–267CrossRefGoogle Scholar
  34. Harrad S, Wijesekera R, Hunter S et al (2004) Preliminary assessment of U.K. human dietary and inhalation exposure to polybrominated diphenyl ethers. Environ Sci Technol 38:2345–2350CrossRefGoogle Scholar
  35. Harrad S, Hazrati S, Ibarra C (2006) Concentrations of polychlorinated biphenyls in indoor air and polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: implications for human exposure. Environ Sci Technol 40:4633–4638CrossRefGoogle Scholar
  36. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832CrossRefGoogle Scholar
  37. Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New YorkGoogle Scholar
  38. Haugen J-E, Wania F, Lei YD (1999) Polychlorinated biphenyls in the atmosphere of southern Norway. Environ Sci Technol 33:2340–2345CrossRefGoogle Scholar
  39. Hawari J, Demeter A, Samson R (1992) Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of Aroclor 1254 in soil samples by solar radiation. Environ Sci Technol 26:2022–2027CrossRefGoogle Scholar
  40. Hayakawa K, Takatsuki H, Watanabe I et al (2004) Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere 57:343–356CrossRefGoogle Scholar
  41. Hildemann LM, Markowski GR, Jones MC et al (1991) Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat-cooking operations. Aerosol Sci Technol 14:138–152CrossRefGoogle Scholar
  42. Hillery BR, Basu I, Sweet CW et al (1997) Temporal and spatial trends in a long-term study of gas-phase PCB concentrations near the Great Lakes. Environ Sci Technol 31:1811–1816CrossRefGoogle Scholar
  43. Hites RA (2004) Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol 38:945–956CrossRefGoogle Scholar
  44. Hoh E, Hites RA (2005) Brominated flame retardants in the atmosphere of the east-central United States. Environ Sci Technol 39:7794–7802CrossRefGoogle Scholar
  45. Hu D, Martinez A, Hornbuckle KC (2008) Discovery of non-aroclor PCB (3,3′-dichlorobiphenyl) in Chicago air. Environ Sci Technol 42:7873–7877CrossRefGoogle Scholar
  46. Hua I, Kang N, Jafvert CT et al (2003) Heterogeneous photochemical reactions of decabromodiphenyl ether. Environ Toxicol Chem 22:798–804CrossRefGoogle Scholar
  47. Hung H, Halsall CJ, Blanchard P et al (2001) Are PCBs in the Canadian arctic atmosphere declining? Evidence from 5 years of monitoring. Environ Sci Technol 35:1303–1311CrossRefGoogle Scholar
  48. Jang M, Kamens RM (1998) A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: humidity effects. Environ Sci Technol 32:1237–1243CrossRefGoogle Scholar
  49. Jang M, Kamens RM, Leach KB et al (1997) A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter. Environ Sci Technol 31:2805–2811CrossRefGoogle Scholar
  50. Jaward FM, Farrar NJ, Harner T et al (2004) Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environ Sci Technol 38:34–41CrossRefGoogle Scholar
  51. Junge CE (1977) Fate of pollutants in the air and water environments. Advances in environmental science and technology. Wiley, New YorkGoogle Scholar
  52. Kajiwara N, Noma Y, Takigami H (2008) Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight. Environ Sci Technol 42:4404–4409CrossRefGoogle Scholar
  53. Kaupp H, McLachlan MS (1998) Atmospheric particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition. Atmos Environ 33:85–95CrossRefGoogle Scholar
  54. Kaupp H, McLachlan MS (1999) Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere 38:3411–3421CrossRefGoogle Scholar
  55. Kaupp H, McLachlan MS (2000) Distribution of polychlorinated dibenzo-P-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) within the full size range of atmospheric particles. Atmos Environ 34:73–83CrossRefGoogle Scholar
  56. Kim K-S, Masunaga S (2005) Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan. Environ Pollut 138:290–298CrossRefGoogle Scholar
  57. Kiss G, Varga-Puchony Z, Rohrbacher G et al (1998) Distribution of polycyclic aromatic hydrocarbons on atmospheric aerosol particles of different sizes. Atmos Res 46:253–261CrossRefGoogle Scholar
  58. Korfmacher WA, Wehry EL, Mamantov G et al (1980) Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environ Sci Technol 14:1094–1099CrossRefGoogle Scholar
  59. Laflamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42:289–303CrossRefGoogle Scholar
  60. Lee W-J, Su C-C, Sheu H-L et al (1996) Monitoring and modeling of PCB dry deposition in urban area. J Hazard Mater 49:57–88CrossRefGoogle Scholar
  61. Lee SC, Ho KF, Chan LY et al (2001) Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmos Environ 35:5949–5960CrossRefGoogle Scholar
  62. Lee RGM, Thomas GO, Jones KC (2004) PBDEs in the atmosphere of three locations in Western Europe. Environ Sci Technol 38:699–706CrossRefGoogle Scholar
  63. Lepine F, Masse R (1990) Degradation pathways of PCB upon gamma irradiation. Environ Health Perspect 89:183–187Google Scholar
  64. Lepine FL, Milot SM, Vincent NM et al (1991) Photochemistry of higher chlorinated PCBs in cyclohexane. J Agric Food Chem 39:2053–2056CrossRefGoogle Scholar
  65. Li A, Schoonover TM, Zou Q et al (2005) Polycyclic aromatic hydrocarbons in residential air of ten Chicago area homes: concentrations and influencing factors. Atmos Environ 39:3491–3501CrossRefGoogle Scholar
  66. Li A, Rockne KJ, Sturchio N et al (2009) PCBs in sediments of the Great Lakes—distribution and trends, homolog and chlorine patterns, and in situ degradation. Environ Pollut 157:141–147CrossRefGoogle Scholar
  67. Liang C, Pankow JF (1996) Gas/particle partitioning of organic compounds to environmental tobacco smoke: partition coefficient measurements by desorption and comparison to urban particulate material. Environ Sci Technol 30:2800–2805CrossRefGoogle Scholar
  68. Lin Y, Gupta G, Baker J (1995) Photodegradation of polychlorinated biphenyl congeners using simulated sunlight and diethylamine. Chemosphere 31:3323–3344CrossRefGoogle Scholar
  69. Lohmann R, Harner T, Thomas GO et al (2000) A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environ Sci Technol 34:4943–4951CrossRefGoogle Scholar
  70. Mandalakis M, Stephanou EG (2007) Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany. Environ Pollut 147:211–221CrossRefGoogle Scholar
  71. Mandalakis M, Tsapakis M, Tsoga A et al (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035CrossRefGoogle Scholar
  72. Mandalakis M, Besis A, Stephanou EG (2009) Particle-size distribution and gas/particle partitioning of atmospheric polybrominated diphenyl ethers in urban areas of Greece. Environ Pollut 157:1227–1233CrossRefGoogle Scholar
  73. Masclet P, Mouvier G, Nikolaou K (1986) Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos Environ 20:439–446 (1967)Google Scholar
  74. Meijer SN, Ockenden WA, Sweetman A et al (2003) Global distribution and budget of PCBs and HCB in background surface soils: Implications for sources and environmental processes. Environ Sci Technol 37:667–672CrossRefGoogle Scholar
  75. Motelay-Massei A, Harner T, Shoeib M et al (2005) Using passive air samplers to assess urban–rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environ Sci Technol 39:5763–5773CrossRefGoogle Scholar
  76. Murphy TJ, Rzeszutko CP (1977) Precipitation inputs of PCBs to Lake Michigan. J Great Lakes Res 3:305–312CrossRefGoogle Scholar
  77. National Toxicology Program (2005) Report on carcinogens, eleventh ed. Public Health Service. US Department of Health and Human Services, WashingtonGoogle Scholar
  78. Naumova YY, Eisenreich SJ, Turpin BJ et al (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36:2552–2559CrossRefGoogle Scholar
  79. Naumova YY, Offenberg JH, Eisenreich SJ et al (2003) Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled outdoor/indoor atmospheres. Atmos Environ 37:703–719CrossRefGoogle Scholar
  80. Offenberg JH, Baker JE (1999) Aerosol size distributions of polycyclic aromatic hydrocarbons in urban and over-water atmospheres. Environ Sci Technol 33:3324–3331CrossRefGoogle Scholar
  81. Ohta S, Nakao T, Nishimura H et al (2002) Contamination levels of PBDEs, TBBPA, PCDDs/DFs, PBDDs/DFs and PXDDs/DFs in the environment of Japan. Organohalogen Compd 57:57–60Google Scholar
  82. Ohura T, Amagai T, Fusaya M et al (2004) Spatial distributions and profiles of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan. Environ Sci Technol 38:49–55CrossRefGoogle Scholar
  83. Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21:2275–2283 (1967)Google Scholar
  84. Pankow JF (1994) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188CrossRefGoogle Scholar
  85. Pankow JF, Bidleman TF (1992) Interdependence of the slopes and intercepts from log–log correlations of measured gas-particle partitioning and vapor pressure—I. Theory and analysis of available data. Atmos Environ A 26:1071–1080CrossRefGoogle Scholar
  86. Pankow JF, Storey JME, Yamasaki H (1993) Effects of relative humidity on gas/particle partitioning of semivolatile organic compounds to urban particulate matter. Environ Sci Technol 27:2220–2226CrossRefGoogle Scholar
  87. Panshin SY, Hites RA (1994) Atmospheric concentrations of polychlorinated biphenyls in Bermuda. Environ Sci Technol 28:2001–2007CrossRefGoogle Scholar
  88. Pettersson-Julander A, Bavel B, Engwall M et al (2004) Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden. J Environ Monit 6:874–880CrossRefGoogle Scholar
  89. Pozo K, Harner T, Shoeib M et al (2004) Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile. Environ Sci Technol 38:6529–6537CrossRefGoogle Scholar
  90. Rodenburg LA, Guo J, Du S et al (2010) Evidence for unique and ubiquitous environmental sources of 3, 3′-dichlorobiphenyl (PCB 11). Environ Sci Technol 44(8):2816–2821CrossRefGoogle Scholar
  91. Rogge WF, Hildemann LM, Mazurek MA et al (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651CrossRefGoogle Scholar
  92. Schecter A, Päpke O, Tung KC et al (2005) Polybrominated diphenyl ether flame retardants in the US population: current levels, temporal trends, and comparison with dioxins, dibenzofurans, and polychlorinated biphenyls. J Occup Environ Med 47:199CrossRefGoogle Scholar
  93. Shoeib M, Harner T, Ikonomou M et al (2004) Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers. Environ Sci Technol 38:1313–1320CrossRefGoogle Scholar
  94. Simcik MF, Zhang H, Eisenreich SJ et al (1997) Urban contamination of the Chicago/coastal Lake Michigan atmosphere by PCBs and PAHs during AEOLOS. Environ Sci Technol 31:2141–2147CrossRefGoogle Scholar
  95. Simcik MF, Franz TP, Zhang H et al (1998) Gas-particle partitioning of PCBs and PAHs in the Chicago urban and adjacent coastal atmosphere: states of equilibrium. Environ Sci Technol 32:251–257CrossRefGoogle Scholar
  96. Sjödin A, Carlsson H, Thuresson K et al (2000) Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol 35:448–454CrossRefGoogle Scholar
  97. Sobek A, Gustafsson O, Hajdu S et al (2004) Particle-water partitioning of PCBs in the photic zone: a 25-month study in the open Baltic Sea. Environ Sci Technol 38:1375–1382CrossRefGoogle Scholar
  98. Söderström G, Sellström U, de Wit CA et al (2004) Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ Sci Technol 38:127–132CrossRefGoogle Scholar
  99. Strandberg B, Dodder NG, Basu I et al (2001) Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environ Sci Technol 35:1078–1083CrossRefGoogle Scholar
  100. Su Y, Lei YD, Wania F et al (2006) Regressing gas/particle partitioning data for polycyclic aromatic hydrocarbons. Environ Sci Technol 40:3558–3564CrossRefGoogle Scholar
  101. Tasdemir Y, Vardar N, Odabasi M et al (2004) Concentrations and gas/particle partitioning of PCBs in Chicago. Environ Pollut 131:35–44CrossRefGoogle Scholar
  102. Terzi E, Samara C (2004) Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece. Environ Sci Technol 38:4973–4978CrossRefGoogle Scholar
  103. Tsapakis M, Stephanou EG (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147–156CrossRefGoogle Scholar
  104. USEPA (2009a) Organics questions. http://www.epa.gov/waste/hazard/testmethods/faq/faqs_org.htm. Accessed 16 July 2009
  105. USEPA (2009b) Health effects of PCBs. http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/effects.htm. Accessed 30 July 2009
  106. van Esch GJ (1994) Environmental health criteria 162, brominated diphenyl ethers. World Health Organization, GenevaGoogle Scholar
  107. Venkataraman C, Thomas S, Kulkarni P (1999) Size distributions of polycyclic aromatic hydrocarbons—gas/particle partitioning to urban aerosols. J Aerosol Sci 30:759–770CrossRefGoogle Scholar
  108. Volckens J, Leith D (2003a) Comparison of methods for measuring gas-particle partitioning of semivolatile compounds. Atmos Environ 37:3177–3188CrossRefGoogle Scholar
  109. Volckens J, Leith D (2003b) Effects of sampling bias on gas-particle partitioning of semi-volatile compounds. Atmos Environ 37:3385–3393CrossRefGoogle Scholar
  110. Wania F, Dugani CB (2003) Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environ Toxicol Chem 22:1252–1261CrossRefGoogle Scholar
  111. Wei H, Turyk M, Cali S et al (2009) Particle size fractionation and human exposure of polybrominated diphenyl ethers in indoor dust from Chicago. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 44:1353–1361CrossRefGoogle Scholar
  112. Wu SP, Tao S, Liu WX (2006) Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atmosphere of Tianjin, China. Chemosphere 62:357–367CrossRefGoogle Scholar
  113. Xiao H, Wania F (2003) Is vapor pressure or the octanol-air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmos Environ 37:2867–2878CrossRefGoogle Scholar
  114. Yamasaki H, Kuwata K, Miyamoto H (1982) Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ Sci Technol 16:189–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Public HealthUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations