Advertisement

Fate and Transfer of Semivolatile Organic Compounds in a Multi-Compartment Environment

  • Rajasekhar BalasubramanianEmail author
  • Jun He
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Semivolatile organic compounds (SVOCs) comprise many priority pollutants such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). These pollutants can be introduced into the environment via the atmosphere, for example, in the emissions of incomplete combustion of fossil fuels (e.g. PAHs), out-gassing from pollutant-containing media such as paints, transformers and capacitors etc. (e.g. PCBs) and by spraying onto soils and vegetation (e.g. OCPs). They are of significant concern due to their carcinogenicity and mutagenicity, and are subject to bioaccumulation in the lipid fraction of biological tissues, thus leading to their biomagnification in the environmental system (Holsen and Noll, 1992). Once released into the atmosphere, these pollutants can be transported by atmospheric movement over the Earth’s surface and can be found far from any sources in media such as waters, soils, biota or even ice-cores (Kawamura et al. 1994; Wania 1994; Muir et al. 1996). In order to assess potential risks of these pollutants for the natural environment and human health, it is important to understand the fate and distribution of these pollutants after they are introduced into the environment.

Keywords

Elemental Carbon Total Suspended Particle Rainwater Sample Semivolatile Organic Compound Rain Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham MH (2004) Determination of sets of solute descriptors from chromatorgaphic measurements. J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  2. Achman DR, Hornbuckle KC, Eisenreich SJ (1993) Volatilization of polychlorinated biphenyls from Green Bay, Lake Michigan. Environ Sci Technol 27:75–87CrossRefGoogle Scholar
  3. Arp HP, Goss KU, Schwarzenbach RP (2006) Evaluation of a predictive model for air/surface adsorption equilibrium constants and enthalpies. Environ Toxicol Chem 25:45–51CrossRefGoogle Scholar
  4. Bamford HA, Offenberg JH, Larsen RK, Ko FC, Baker JE (1999a) Diffusive exchange of polycyclic aromatic hydrocarbons across the air-water interface of the Patapsco River, an urbanized subestuary of the Chesapeake Bay. Environ Sic Technol 33:2138–2144CrossRefGoogle Scholar
  5. Bamford HA, Poster DL, Baker JE (1999b) Temperature dependence of henry’s law constants of thirteen PAHs between 4°C and 31°C. Environ Toxicol Chem 18:1905–1912Google Scholar
  6. Bidleman TF (1988) Atmospheric processes. Wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environ Sci Technol 22:361–367CrossRefGoogle Scholar
  7. Brunciak PA, Dachs J, Franz TP, Gigliotti CL, Nelson ED, Turpin BJ, Eisenreich SJ (2001) Polychlorinated biphenyls and particulate organic/elemental carbon in the atmosphere of Chesapeake Bay, USA. Atmos Environ 35:5663–5677CrossRefGoogle Scholar
  8. Bucheli TD, Gustafsson Ö (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34:5144–5151CrossRefGoogle Scholar
  9. Calderón SM, Poor ND, Campbell SW, Hartsell B (2008) Rainfall scavenging coefficients for atmospheric nitric acid and nitrate in a subtropical coastal environment. Atmos Environ 42:7757–7767CrossRefGoogle Scholar
  10. Callén MS, de la Cruz MT, López JM, Murillo R, Navarro MV, Mastral AM (2008) Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Chemosphere 73:1357–1365CrossRefGoogle Scholar
  11. Cerro C, Bech J, Codina B, Lorente J (1998) Modeling rain erosivity using disdrometric techniques. Soil Sci Soc Am J 62:731–735CrossRefGoogle Scholar
  12. Cetin B, Ozer S, Sofuoglu A, Odabasi M (2006) Determination of Henry’s law constants of organochlorine pesticides in deionized and saline water as a function of temperature. Atmos Environ 40:4538–4546CrossRefGoogle Scholar
  13. Chen SF, Chan RC, Read SM, Bromley LA (1973) Viscosity of sea water solutions. Desalination 13:37–51CrossRefGoogle Scholar
  14. Chernyak SM, Rice CP, McConnell LL (1996) Evidence of currently-used pesticides in air, ice, fog, seawater and surface microlayer in the Bering and Chukchi Seas. Mar Pollut Bull 32:410–419CrossRefGoogle Scholar
  15. Cotham W, Bidleman T (1995) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan. Environ Sci Technol 29:2782–2789CrossRefGoogle Scholar
  16. Dachs J, Eisenreich SJ (2000) Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 34:3690–3697CrossRefGoogle Scholar
  17. Daly GL, Wania F (2004) Simulating the influence of snow on the fate of organic compounds. Environ Sci Technol 38:4176–4186CrossRefGoogle Scholar
  18. Feingold G, Levin Z (1986) The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J Clim Appl Meteor 25:1346–1363CrossRefGoogle Scholar
  19. Fernández P, Grimalt JO, Vilanova RM (2002) Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ Sci Technol 36:1162–1168CrossRefGoogle Scholar
  20. Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31:2289–2296CrossRefGoogle Scholar
  21. Franz TP, Eisenreich SJ (1998) Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ Sci Technol 32:1771–1778CrossRefGoogle Scholar
  22. Gašparović B, Kozarac Z, Saliot A, Ćosović B, Möbius D (1998) Physicochemical characterization of natural and ex-situ reconstructed sea-surface microlayers. J Colloid Interface Sci 208:191–202CrossRefGoogle Scholar
  23. Gigliotti CL, Brunciak PA, Dachs J, Glenn TR, Nelson ED (2002) Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, harbor estuary. Environ Toxicol Chem 21:235–244Google Scholar
  24. Glotfelty DE, Majewski MS, Seiber JN (1990) Distribution of several organophosphorus insecticides and their oxygen analogs in a foggy atmosphere. Environ Sci Technol 24:353–357CrossRefGoogle Scholar
  25. Goss KU (1997) Conceptual model for the adsorption of organic compounds from the gas phase to liquid and solid surfaces. Environ Sci Technol 31:3600–3605CrossRefGoogle Scholar
  26. Goss KU, Eisenreich SJ (1996) Adsorption of VOCs from the gas phase to different minerals and a mineral mixture. Environ Sci Technol 30:2135–2142CrossRefGoogle Scholar
  27. Götz CW, Scheringer M, Macleod M, Roth CM, Hungerbühler K (2007) Alternative approaches for modeling gas-particle partitioning of semivolativle organic chemicals: model development and comparison. Environ Sci Technol 41:1272–1278CrossRefGoogle Scholar
  28. Gramatica P, Consonni V, Todeschini R (1999) QSAR study on the tropospheric degradation of organic compounds. Chemosphere 38:1371–1378CrossRefGoogle Scholar
  29. Gramatica P, Consolaro F, Pozzi S (2001) QSAR approach to POPs screening for atmospheric persistence. Chemosphere 43:655–664CrossRefGoogle Scholar
  30. Gschwend PM, Wu SC (1985) On the constancy of sediment water partition-coefficients of hydrophobic organic pollutants. Environ Sic Technol 19:90–96CrossRefGoogle Scholar
  31. Guitart C, García-Flor N, Bayona JM, Albaigés J (2007) Occurrence and fate of polycyclic aromatic hydrocarbons in the coastal surface microlayer. Mar Pollut Bull 54:186–194CrossRefGoogle Scholar
  32. Hardy JT (1982) The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Progr Oceanogr 11:307–328CrossRefGoogle Scholar
  33. Harner T, Bidleman TF (1996) Measurements of octanol-air partition coefficients for polychlorinated biphenyls. J Chem Eng Data 41:895–899CrossRefGoogle Scholar
  34. Harner T, Bidleman TF (1998) Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32:1494–1502CrossRefGoogle Scholar
  35. Hart KM, Pankow JF (1994) High-volume air sampler for particle and gas sampling 2. Use of backup filters to correct for the adsorption of gas-phase polycyclic aromatic hydrocarbons to the front filter. Environ Sci Technol 28:655–661CrossRefGoogle Scholar
  36. Helm PA, Bidleman TF (2005) Gas-particle partitioning of polychlorinated naphthalenes and non- and mono-orgho-substituted polychlorinated biphenyls in arctic air. Sci Total Environ 342:161–173CrossRefGoogle Scholar
  37. Hinckley DA, Bidleman TF (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. J Chem Eng Data 35:232–237CrossRefGoogle Scholar
  38. Holsen TM, Noll KE (1992) Dry deposition of atmospheric particles: application of current models to ambient data. Environ Sci Technol 26:1807–1815CrossRefGoogle Scholar
  39. Hulscher TT, Velde LE, Bruggeman WA (1992) Temperature dependence of henry’s law constants for selected chlorobenzenes, PCBs and PAHs. Environ Toxicol Chem 11:1595–1603CrossRefGoogle Scholar
  40. Jaenicke R (1988) Aerosol physics and chemistry. In: Fischer G (ed) Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaft und Technik, Band 4. Meteorologie. Springer, BerlinGoogle Scholar
  41. Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36:3725–3734CrossRefGoogle Scholar
  42. Junge CE (1977) Fate of pollutants in the air and water environments. Part I. Wiley, New YorkGoogle Scholar
  43. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1043CrossRefGoogle Scholar
  44. Kawamura K, Suzuki I, Fujii Y, Watanabe O (1994) Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Naturwissenschaften 81:502–505CrossRefGoogle Scholar
  45. Kelly CP, Cramer CJ, Truhlar DG (2004) Predicting adsorption coefficients at air-water interfaces using universal solvation and surface area models. J Phys Chem B 108:12882–12897CrossRefGoogle Scholar
  46. Kömp P, McLachlan MS (1997) Octanol/air partitioning of polychlorinated biphenyls. Environ Toxicol Chem 16:2433–2437CrossRefGoogle Scholar
  47. Lei YD, Chankalal R, Chan A, Wania F (2002) Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons. J Chem Eng Data 47:801–806CrossRefGoogle Scholar
  48. Li J, Cheng H, Zhang G, Qi S, Li X (2009) Polycyclic aromatic hydrocarbon (PAH) deposition to and exchange at the air-water interface of Luhu, an urban lake in Guangzhou, China. Environ Pollut 157:273–279CrossRefGoogle Scholar
  49. Ligocki MP, Leuenberger C, Pankow JF (1985a) Trace organic-compounds in rain.2. Gas scavenging of neutral organic-compounds. Atmos Environ 19:1609–1617CrossRefGoogle Scholar
  50. Ligocki MP, Leuenberger C, Pankow JF (1985b) Trace organic-compounds in rain.3. Particle scavenging of neutral organic-compounds. Atmos Environ 19:1619–1626CrossRefGoogle Scholar
  51. Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydro-carbons: state of knowledge and recommended parametrization for modeling. Environ Sci Technol 38:3793–3803CrossRefGoogle Scholar
  52. Luo X, Mai B, Yang Q, Fu J, Sheng G, Wang Z (2004) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Mar Pollut Bull 48:1102–1115CrossRefGoogle Scholar
  53. Mackay D, Shiu WY, Ma KC (eds) (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis Publisher, Boca Raton, FLGoogle Scholar
  54. Mackay D, Shiu WY, Ma KC (eds) (1996) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis Publishers, Boca Raton, FLGoogle Scholar
  55. Mader BT, Pankow JF (2001) Gas/solid partitioning of semivolatile organic compounds (SOCs) to air filters. 3. An analysis of gas adsorption artifacts in measurements of atmospheric SOCs and organic carbon (OC) when using Teflon membrane filters and quartz fiber filters. Environ Sci Technol 35:3422–3432CrossRefGoogle Scholar
  56. Manodori L, Gambaro A, Piazza R, Ferrari S, Stortini AM, Moret I, Capodaglio G (2006) PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy). Mar Pollut Bull 52:184–192CrossRefGoogle Scholar
  57. Marshal JS, Palmer WM (1948) The distribution of rain-drops with size. J Atmos Sci 5:165–166Google Scholar
  58. Mircea M, Stefan S, Fuzzi S (2000) Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmos Environ 34:5169–5174CrossRefGoogle Scholar
  59. Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD (2006) New static apparatus and vapor pressure of reference materials: naphthalene, benzoic acid, benzophenone, and ferrocene. J Chem Eng Data 51:757–766CrossRefGoogle Scholar
  60. Muir DCG, Omelchenko A, Grift N, Savoie D, Lockhart WL, Wilkinson P, Brunskill GJ (1996) Spatial trends and historical deposition of polychlorinated biphenyls in Canadian midlatitude and Arctic lake sediments. Environ Sci Technol 30:3609–3617CrossRefGoogle Scholar
  61. Nguyen TH, Goss KU, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924CrossRefGoogle Scholar
  62. Odabasi M, Cetin E, Sofuoglu A (2006) Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas-particle partitioning in an urban atmosphere. Atmos Environ 40:6615–6625CrossRefGoogle Scholar
  63. Offenberg JH, Baker JE (2002) Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. Environ Sci Technol 36:3763–3771CrossRefGoogle Scholar
  64. Ogura I, Masunaga S, Nakanishi J (2001) Parameters characterizing atmospheric behavior of PCDDs/PCDFs. Organohalogen Compd 52:483–486Google Scholar
  65. Pandit GG, Sahu SK, Puranik VD, Venkat Raj V (2006) Exchange of polycyclic aromatic hydrocarbons across the air-water interface at the creek adjoining Mumbai harbour. India Environ Int’l 32:259–264Google Scholar
  66. Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21:2275–2283CrossRefGoogle Scholar
  67. Pankow JF (1988) The calculated effect of non-exchangeable material on the gas particle distribution of organic compounds. Atmos Environ 22:1405–1409CrossRefGoogle Scholar
  68. Pankow JF, Bidleman TF (1991) Effects of temperature, TSP and percent non-exchangeable material in determining the gas-particle partitioning of organic compounds. Atmos Environ 25A:2241–2249Google Scholar
  69. Pankow JF, Bidleman TF (1992) Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle partitioning and vapor pressure-I. Theory and analysis of available data. Atmos Environ 26A:1071–1080Google Scholar
  70. Pankow JF, Storey JM, Yamasaki H (1993) Effects of relative humidity on gas/particle partitioning of semivolatile organic compounds to urban particulate matter. Environ Sci Technol 27:2220–2226CrossRefGoogle Scholar
  71. Poster DL, Baker JE (1996a) Influence of submicron particles on hydrophobic organic contaminants and distributions of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in rain water. Environ Sci Technol 30:341–348CrossRefGoogle Scholar
  72. Poster DL, Baker JE (1996b) Influence of submicron particles on hydrophobic organic contaminants in precipitation. 2. Scavenging of polycyclic aromatic hydrocarbons by rain. Environ Sci Technol 30:349–354CrossRefGoogle Scholar
  73. Prevedouros K, Palm-Cousins A, Gustafsson Ö, Cousins IT (2008) Development of a black carbon-inclusive multi-media model: application for PAHs in Stockholm. Chemosphere 70:607–615CrossRefGoogle Scholar
  74. Roth CM, Goss KU, Schwarzenbach RP (2005a) Sorption of a diverse set of organic vapors to diesel soot and road tunnel aerosols. Environ Sci Technol 39:6632–6637CrossRefGoogle Scholar
  75. Roth CM, Goss KU, Schwarzenbach RP (2005b) Sorption of a diverse set of organic vapors to urban aerosols. Environ Sci Technol 39:6638–6643CrossRefGoogle Scholar
  76. Sahsuvar L, Helm PA, Jantunen LM, Bidleman TF (2003) Henry’s law constants for alpha-, beta- and gamma-HCHs as a function of temperature and revised estimates of gas exchange in Arctic regions. Atmos Environ 37:983–992CrossRefGoogle Scholar
  77. Sahu SK, Pandit GG, Sadasivan S (2004) Precipitation scavenging of polycyclic aromatic hydrocarbons in Mumbai, India. Sci Total Environ 318:245–249CrossRefGoogle Scholar
  78. Schwarzenbach RP, Geschwend PM, Imboden DM (eds) (2003) Environmental organic chemistry. Wiley-Interscience, New YorkGoogle Scholar
  79. Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. Wiley, New YorkGoogle Scholar
  80. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New YorkGoogle Scholar
  81. Simcik MF (2004) The importance of surface adsorption on the washout of semivolatile organic compounds by rain. Atmos Environ 38:491–501CrossRefGoogle Scholar
  82. Storey JM, Luo W, Isabelle LM, Pankow JF (1995) Gas/solid partitioning of semivolatile organic compounds to model atmospheric solid surfaces as a function of relative humidity. 1. Clean quartz. Environ Sci Technol 29:2420–2428CrossRefGoogle Scholar
  83. Strommen MR, Kamens RM (1999) Simulation of semivolatile organic compound microtransport at different time scales in airborne diesel soot particles. Environ Sci Technol 33:1738–1746CrossRefGoogle Scholar
  84. Thibodeaux LJ, Nadler KC, Valsaraj KT, Reible RR (1991) The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols-competitive adsorption theory predictions. Atmos Environ 25A:1649–1656Google Scholar
  85. Thompson JD, Cramer CJ, Truhlar DG (2003) Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. J Chem Phys 19:1661–1670CrossRefGoogle Scholar
  86. Totten LA, Brunciak PA, Gigliotti CL, Dachs J, Glenn TR, Nelson ED, Eisenreich SJ (2001) Dynamic air-water exchange of polychlorinated biphenyls in the New York-New Jersey harbor estuary. Environ Sci Technol 35:3834–3840CrossRefGoogle Scholar
  87. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610Google Scholar
  88. Turpin BJ, Saxena P, Andrews E (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ 34:2983–3013CrossRefGoogle Scholar
  89. Van Noort PCM (2003) A thermodynamics-based estimation model for adsorption of organic compounds by carbonaceous materials in environmental sorbents. Environ Toxicol Chem 22:1179–1188CrossRefGoogle Scholar
  90. Viana M, Chi X, Maenhaut W, Querol X, Alastuey A, Mikuška P, Večeřa Z (2006) Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. Atmos Environ 40:2180–2193CrossRefGoogle Scholar
  91. Walters RW, Luthy RG (1984) Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environ Sci Technol 18:395–403CrossRefGoogle Scholar
  92. Wania F (1994) Temperature and chemical behavior in the environment-towards an understanding of the global fate of persistent organic chemicals. University of Toronto, CanadaGoogle Scholar
  93. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  94. Wanninkhof R, Sullivan KF, Top Z (2004) Air-sea gas transfer in the Southern Ocean. J Geophys Res 109:C08S19.01–C08S19.12CrossRefGoogle Scholar
  95. Wei BN, Xie SD, Yu M, Wu L (2007) QSPR-based prediction of gas/particle partitioning of polychlorinated biphenyls in the atmosphere. Chemosphere 66:1807–1820CrossRefGoogle Scholar
  96. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270CrossRefGoogle Scholar
  97. Wilkinson AC, Kimpe LE, Blais JM (2005) Air-water gas exchange of chlorinated pesticides in four lakes spanning. Environ Toxicol Chem 24:61–69CrossRefGoogle Scholar
  98. Wurl O, Karuppiah S, Obbard JP (2006a) The role of the sea-surface microlayer in the air-sea gas exchange of organochlorine compounds. Sci Total Environ 369:333–343CrossRefGoogle Scholar
  99. Wurl O, Obbard JP, Lam PKS (2006b) Distribution of organochlorine compounds in the sea-surface microlayer, water column and sediment of Singapore’s coastal environment. Chemosphere 62:1105–1115CrossRefGoogle Scholar
  100. Xiao H, Li NQ, Wania F (2004) Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane. J Chem Eng Data 49:173–185CrossRefGoogle Scholar
  101. Yamasaki H, Kuwata K, Miyamoto H (1982) Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ Sci Technol 25:189–194CrossRefGoogle Scholar
  102. Zappoli S, Andracchio A, Fuzzi S, Facchini MC, Gelencsér A, Kiss G, Krivácsy Z, Molnár Á, Mészáros E, Hansson H-C, Rosman K, Zebühr Y (1999) Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos Environ 33:2733–2743CrossRefGoogle Scholar
  103. Zhang G, Li J, Cheng H, Li X, Xu W, Jones KC (2007) Distribution of organochlorine pesticides in the Northern South China Sea: implications for land outflow and air-sea exchange. Environ Sci Technol 41:3884–3890CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Environmental Science and EngineeringNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations