Skip to main content

Musical Composer Identification through Probabilistic and Feedforward Neural Networks

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Abstract

During the last decade many efforts for music information retrieval have been made utilizing Computational Intelligence methods. Here, we examine the information capacity of the Dodecaphonic Trace Vector for composer classification and identification. To this end, we utilize Probabilistic Neural Networks for the construction of a “similarity matrix” of different composers and analyze the Dodecaphonic Trace Vector’s ability to identify a composer through trained Feedforward Neural Networks. The training procedure is based on classical gradient-based methods as well as on the Differential Evolution algorithm. An experimental analysis on the pieces of seven classical composers is presented to gain insight about the most important strengths and weaknesses of the aforementioned approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lebar, J., Chang, G., Yu, D.: Classifying musical score by composer: A machine learning approach, http://www.stanford.edu/class/cs229/projects2008.html

  2. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing 10(5), 293–302 (2002)

    Article  Google Scholar 

  3. Mostafa, M.M., Billor, N.: Recognition of western style musical genres using machine learning techniques. Expert Systems with Applications 36(8), 11378–11389 (2009)

    Article  Google Scholar 

  4. Peeters, G.: Musical key estimation of audio signal based on hidden markov modeling of chroma vectors. In: Proc. of the Int. Conf. on Digital Audio Effects DAFx 2006, pp. 127–131 (2006)

    Google Scholar 

  5. Gomez, E.: Tonal description of polyphonic audio for music content processing. INFORMS Journal on Computing 18(3), 294–304 (2006)

    Article  Google Scholar 

  6. Fujishima, T.: Realtime chord recognition of musical sound: A system using common lisp music. In: Proc. ICMC, pp. 464–467 (1999)

    Google Scholar 

  7. Meador, S., Uhlig, K.: Content-based features in the composer identification problem, http://www.stanford.edu/class/cs229/projects2008.html

  8. Pardo, B., Birmingham, W.P.: Algorithms for chordal analysis. Computer Music Journal 26(2), 27–49 (2002)

    Article  Google Scholar 

  9. Beran, J.: Statistics in Musicology, 1st edn., July 2003. Chapman & Hall/CRC (2003)

    Google Scholar 

  10. Pollastri, G.S.E.: Classification of melodies by composer with hidden markov models (November 2001), http://www.computer.org/portal/web/csdl/doi/10.1109/WDM.2001.990162

  11. Liu, Y.W.: Modeling music as markov chains: Composer identification, https://www-ccrma.stanford.edu/~jacobliu/254report.pdf

  12. MIDI: The classical MIDI connection site map, http://www.classicalmidiconnection.com

  13. Koepf, S., Haerpfer, B.: The MSQ project, http://www.aconnect.de/friends/msq2/msq.htm

  14. Schell, D.: Optimality in musical melodies and harmonic progressions: The travelling musician. European Journal of Operational Research 140(2), 354–372 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Homei, M., Kazushi, N.: Extraction and analysis of Chroma-Profile from MIDI data. Joho Shori Gakkai Kenkyu Hokoku 2003(82(MUS-51)), 97–101 (2003)

    Google Scholar 

  16. Specht, D.F.: Probabilistic neural networks. Neural Networks 3(1), 109–118 (1990)

    Article  Google Scholar 

  17. Hand, D.: Kernel Discriminant Analysis. John Wiley & Sons Ltd., Chichester (1982)

    MATH  Google Scholar 

  18. Georgiou, V.L., Pavlidis, N.G., Parsopoulos, K.E., Alevizos, P.D., Vrahatis, M.N.: New self-adaptive probabilistic neural networks in bioinformatic and medical tasks. International Journal on Artificial Intelligence Tools 15(3), 371–396 (2006)

    Article  Google Scholar 

  19. Georgiou, V.L., Alevizos, P.D., Vrahatis, M.N.: Novel approaches to probabilistic neural networks through bagging and evolutionary estimating of prior probabilities. Neural Processing Letters 27(2), 153–162 (2008)

    Article  Google Scholar 

  20. Haykin, S.S.: Neural networks and learning machines. Prentice Hall, Englewood Cliffs (2008)

    Google Scholar 

  21. Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for ‘hardware–friendly’ neural networks. Natural Computing 1, 307–322 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Neural network-based colonoscopic diagnosis using on-line learning and differential evolution. Applied Soft Computing 4, 369–379 (2004)

    Article  Google Scholar 

  23. Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Evolutionary training of hardware realizable multilayer perceptrons. Neural Computing and Application 15, 33–40 (2005)

    Article  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  25. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, New York (2005)

    MATH  Google Scholar 

  26. Marquardt, D.W.: An algorithm for Least-Squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11(2), 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  28. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The Rprop algorithm. In: Proc. of the IEEE Intl. Conf. on Neural Networks, San Francisco, CA, pp. 586–591 (1993)

    Google Scholar 

  29. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  30. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1982)

    Google Scholar 

  31. Demuth, H., Beale, M.: Neural Network Toolbox 6: For use with MATLAB: User’s Guide. In: The Mathworks, Cochituate Place, 24 Prime Park Way, Natick, MA, USA (1992-2009)

    Google Scholar 

  32. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaliakatsos-Papakostas, M.A., Epitropakis, M.G., Vrahatis, M.N. (2010). Musical Composer Identification through Probabilistic and Feedforward Neural Networks. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12242-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12242-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12241-5

  • Online ISBN: 978-3-642-12242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics