Advertisement

Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review

  • Malcolm I. Heywood
  • Peter Lichodzijewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)

Abstract

In 1996 Daida et al. reviewed the case for using symbiosis as the basis for evolving complex adaptive systems [6]. Specific observations included the impact of different philosophical views taken by biologists as to what constituted a symbiotic relationship and whether symbiosis represented an operator or a state. The case was made for symbiosis as an operator. Thus, although specific cost benefit characterizations may vary, the underlying process of symbiosis is the same, supporting the operator based perspective. Symbiosis provides an additional mechanism for adaption/ complexification than available under Mendelian genetics with which Evolutionary Computation (EC) is most widely associated. In the following we review the case for symbiosis in EC. In particular, symbiosis appears to represent a much more effective mechanism for automatic hierarchical model building and therefore scaling EC methods to more difficult problem domains than through Mendelian genetics alone.

Keywords

Horizontal Gene Transfer Evolutionary Computation Complex Adaptive System Mendelian Genetic Coevolutionary Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amabile-Cuevas, C.F., Chicurel, M.: Horizontal gene transfer. American Scientist 81, 332–341 (1993)Google Scholar
  2. 2.
    Baghshah, M.S., Shouraki, S.B., Halavati, R., Lucas, C.: Evolving fuzzy classifiers using a symbiotic approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1601–1607 (2007)Google Scholar
  3. 3.
    Bull, L., Fogarty, T.C.: Evolutionary computing in multi-agent environments: Speciation and symbiosis. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 12–21. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Burke, D.S., Jong, K.A.D., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting more genetics into Genetic Algorithms. Evolutionary Computation 6(4), 387–410 (1998)CrossRefGoogle Scholar
  5. 5.
    Cagnoni, S., Rivero, D., Vanneschi, L.: A purely evolutionary memetic algorithm as a first step towards symbiotic coevolution. In: Proceedings of the Congress on Evolutionary Computation, pp. 1156–1163. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  6. 6.
    Daida, J.M., Grasso, C.S., Stanhope, S.A., Ross, S.J.: Symbionticism and complex adaptive systems I: Implications of having symbiosis occur in nature. In: Proceedings of the Annual Conference on Evolutionary Programming, pp. 177–186. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Daida, J.M., Ross, S.J., Hannan, B.C.: Biological symbiosis as a metaphor for computational hybridization. In: Proceedings of the International Conference on Genetic Algorithms, pp. 328–335. Morgan Kaufmann, San Francisco (1995)Google Scholar
  8. 8.
    de Bary, H.A.: Die Erscheinung der Symbiose. Votrag, gehalten auf der Versammlung Deutscher Naturforscher und Aerzte zu Cassel (1879)Google Scholar
  9. 9.
    Dumeur, R.: Evolution through cooperation: The symbiotic algorithm. In: Alliot, J.-M., Ronald, E., Lutton, E., Schoenauer, M., Snyers, D. (eds.) AE 1995. LNCS, vol. 1063, pp. 145–158. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Eguchi, T., Hirasawa, K., Hu, J., Ota, N.: A study of evolutionary multiagent models based on symbiosis. IEEE Transactions of Systems, Man, and Cybernetics–Part B 36(1), 179–193 (2006)CrossRefGoogle Scholar
  11. 11.
    Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. IEEE Press, Los Alamitos (1998)zbMATHGoogle Scholar
  12. 12.
    Goldbarg, E.F.G., Goldbarg, M.C., Bagi, L.B.: Transgenetic algorithm: A new evolutionary perspective for heuristics design. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 2701–2708 (2007)Google Scholar
  13. 13.
    Halavati, R., Shouraki, S.B., Heravi, M.J., Jashmi, B.J.: Symbiotic evolutionary algorithm: A general purpose optimization approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4538–4545 (2007)Google Scholar
  14. 14.
    Hirasawa, K., Ishikawa, Y., Hu, J., Murata, J., Mao, J.: Genetic symbiosis algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1377–1384 (2000)Google Scholar
  15. 15.
    de Jong, E., Thierens, D., Watson, R.A.: Hierarchical genetic algorithms. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 232–241. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    de Jong, E., Watson, R.A., Thierens, D.: On the complexity of hierarchical problem solving. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1201–1208. ACM Press, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Kim, J.Y., Kim, Y., Kim, Y.K.: An endosymbiotic evolutionary algorithm for optimization. Applied Intelligence 15, 117–130 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kitano, H., Oda, K.: Self-extending symbiosis: A mechanism for increasing robustness through evolution. Biological Theory 1(1), 61–66 (2005)CrossRefGoogle Scholar
  19. 19.
    Kutschera, U.: Symbiogenesis, natural selection, and the dynamic earth. Theory in Biosciences 128, 191–203 (2009)CrossRefGoogle Scholar
  20. 20.
    Kutschera, U., Niklas, K.J.: Endosymbiosis, cell evolution, and speciation. Theory in Biosciences 124, 1–24 (2005)CrossRefGoogle Scholar
  21. 21.
    Lichodzijewski, P., Heywood, M.I.: Managing team-based problem solving with symbiotic bid-based Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 363–370 (2008)Google Scholar
  22. 22.
    Lichodzijewski, P., Heywood, M.I.: Binary versus real-valued reward functions under coevolutionary reinforcement learning. In: Proceedings of the International Conference on Artificial Evolution (2009), https://lsiit.u-strasbg.fr/ea09
  23. 23.
    Margulis, L.: Symbiosis and evolution. Scientific American 225(2), 48–57 (1971)CrossRefGoogle Scholar
  24. 24.
    Margulis, L.: Symbiogenesis and Symbionticism, ch. 1, pp. 1–14 (1991) in ([26])Google Scholar
  25. 25.
    Margulis, L.: Genome acquisition in horizontal gene transfer: Symbiogenesis and macromolecular sequence analysis. In: Gogarten, M.B., et al. (eds.) Horizontal Gene Transfer: Genomes in Flux, ch. 10, pp. 181–191. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Margulis, L., Fester, R. (eds.): Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge (1991)Google Scholar
  27. 27.
    Margulis, L., Sagan, D.: Acquiring Genomes. Basic Books (2002)Google Scholar
  28. 28.
    Maynard Smith, J.: A Darwinian View of Symbiosis, ch. 3, pp. 26–39 (1991), in ([26])Google Scholar
  29. 29.
    Mills, R., Watson, R.A.: Symbiosis, synergy and modularity: Introducing the reciprocal synergy symbiosis algorithm. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1192–1201. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5(4), 373–399 (1998)CrossRefGoogle Scholar
  31. 31.
    Morrison, J., Oppacher, F.: A general model of coevolution for genetic algorithms. In: Proceedings of Artificial Neural Networks and Genetic Algorithms (1999)Google Scholar
  32. 32.
    Paredis, J.: The symbiotic evolution of solutions and their representations. In: Proceedings of the International Conference on Genetic Algorithms, pp. 359–365. Morgan-Kaufmann, San Francisco (1995)Google Scholar
  33. 33.
    Smets, B.F., Barkay, T.: Horizontal gene transfer: Perspectives at a crossroads of scientific disciplines. Nature Reviews Microbiology 3, 675–678 (2005)CrossRefGoogle Scholar
  34. 34.
    Tomlinson, A., Bull, L.: Symbiogenesis in learning classifier systems. Artificial Life 7, 33–61 (2001)CrossRefGoogle Scholar
  35. 35.
    Wallin, D., Ryan, C., Azad, R.M.A.: Symbiogenetic coevolution. In: Proceedings of the Congress on Evolutionary Computation, pp. 1613–1620. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  36. 36.
    Watson, R.A.: Compositional Evolution: The impact of sex, symbiosis and modularity on the gradualist framework of evolution. MIT Press, Cambridge (2006)Google Scholar
  37. 37.
    Watson, R.A., Pollack, J.B.: How symbiosis can guide evolution. In: European Conference on Artificial Life, pp. 29–38. Springer, Heidelberg (1999)Google Scholar
  38. 38.
    Watson, R.A., Pollack, J.B.: A computational model of symbiotic composition in evolutionary transitions. BioSystems 69, 187–209 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Malcolm I. Heywood
    • 1
  • Peter Lichodzijewski
    • 1
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations