Parallel Random Injection Differential Evolution

  • Matthieu Weber
  • Ferrante Neri
  • Ville Tirronen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


This paper proposes the introduction of a generator of random individuals within the ring topology of a Parallel Differential Evolution algorithm. The generated random individuals are then injected within a sub-population. A crucial point in the proposed study is that a proper balance between migration and random injection can determine the success of a distributed Differential Evolution scheme. An experimental study of this balance is carried out in this paper. Numerical results show that the proposed Parallel Random Injection Differential Evolution seems to be a simple, robust, and efficient algorithm which can be used for various applications. An important finding of this paper is that premature convergence problems due to an excessively frequent migration can be overcome by the injection of random individuals. In this way, the resulting algorithm maintains the high convergence speed properties of a parallel algorithm with high migration but differs in that it is able to continue improving upon the available genotypes and detect high quality solutions.


Test Problem Master Node Decision Space Ring Topology Random Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced memetic differential evolution in filter design for defect detection in paper production. Evolutionary Computation 16, 529–555 (2008)CrossRefGoogle Scholar
  3. 3.
    Feoktistov, V.: Differential Evolution in Search of Solutions, pp. 83–86. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. 4.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13, 398–417 (2009)CrossRefGoogle Scholar
  5. 5.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution with a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation 13(3), 526–553 (2009)CrossRefGoogle Scholar
  6. 6.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  7. 7.
    Kwedlo, W., Bandurski, K.: A parallel differential evolution algorithm. In: Proceedings of the IEEE International Symposium on Parallel Computing in Electrical Engineering, pp. 319–324 (2006)Google Scholar
  8. 8.
    Salomon, M., Perrin, G.R., Heitz, F., Armspach, J.P.: Parallel differential evolution: Application to 3-d medical image registration. In: Price, K.V., Storn, R.M., Lampinen, J.A. (eds.) Differential Evolution–A Practical Approach to Global Optimization. Natural Computing Series, pp. 353–411. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Zaharie, D.: Parameter adaptation in differential evolution by controlling the population diversity. In: Petcu, D., et al. (eds.) Proceedings of the International Workshop on Symbolic and Numeric Algorithms for Scientific Computing, pp. 385–397 (2002)Google Scholar
  10. 10.
    Zaharie, D., Petcu, D.: Parallel implementation of multi-population differential evolution. In: Proceedings of the NATO Advanced Research Workshop on Concurrent Information Processing and Computing, pp. 223–232. IOS Press, Amsterdam (2003)Google Scholar
  11. 11.
    Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2023–2029 (2004)Google Scholar
  12. 12.
    Kozlov, K.N., Samsonov, A.M.: New migration scheme for parallel differential evolution. In: Proceedings of the International Conference on Bioinformatics of Genome Regulation and Structure, pp. 141–144 (2006)Google Scholar
  13. 13.
    De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite image registration by distributed differential evolution. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 251–260. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Apolloni, J., Leguizamón, G., García-Nieto, J., Alba, E.: Island based distributed differential evolution: An experimental study on hybrid testbeds. In: Proceedings of the IEEE International Conference on Hybrid Intelligent Systems, pp. 696–701 (2008)Google Scholar
  15. 15.
    Nipteni, M.S., Valakos, I., Nikolos, I.: An asynchronous parallel differential evolution algorithm. In: Proceedings of the ERCOFTAC Conference on Design Optimisation: Methods and Application (2006)Google Scholar
  16. 16.
    Lampinen, J.: Differential evolution - new naturally parallel approach for engineering design optimization. In: Topping, B.H. (ed.) Developments in Computational Mechanics with High Performance Computing, pp. 217–228. Civil-Comp Press (1999)Google Scholar
  17. 17.
    Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with explorative-exploitative population families. Genetic Programming and Evolvable Machines 10(4), 343–371 (2009)CrossRefGoogle Scholar
  18. 18.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthieu Weber
    • 1
  • Ferrante Neri
    • 1
  • Ville Tirronen
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of Jyväskylä(Agora)Finland

Personalised recommendations