Multi-Objective Probability Collectives

  • Antony Waldock
  • David Corne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


We describe and evaluate a multi-objective optimisation (MOO) algorithm that works within the Probability Collectives (PC) optimisation framework. PC is an alternative approach to optimization where the optimization process focusses on finding an ideal distribution over the solution space rather than an ideal solution. We describe one way in which MOO can be done in the PC framework, via using a Pareto-based ranking strategy as a single objective. We partially evaluate this via testing on a number of problems, and compare the results with state of the art alternatives. We find that this first multi-objective probability collectives (MOPC) approach performs competitively, indicating both clear promise, and clear room for improvement.


Multiobjective Optimization Multiobjective Optimization Problem Multiobjective Genetic Algorithm Probability Collective DEB2 Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P., Wakefield, J.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Bieniawski, S.: Distributed Optimization and Flight Control Using Collectives. Thesis, Stanford University (2005)Google Scholar
  3. 3.
    Bieniawski, S., Kroo, I., Wolpert, D.: Discrete, continuous, and constrained optimization using collectives. In: Proc. 10th AIAA/ISSMO M.A.O. Conf., NY (2004)Google Scholar
  4. 4.
    Corne, D., Deb, K., Fleming, P., Knowles, J.: The good of the many outweighs the good of the one. Evol. mult. opt. coNNectionS 1(1), 9–13 (2003)Google Scholar
  5. 5.
    Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In: Proc. GECCO 2007 (2007)Google Scholar
  6. 6.
    Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation 7, 205–230 (1999)CrossRefGoogle Scholar
  7. 7.
    Deb, K.: Multi-Objective Optimization Using EAs. John Wiley and Sons Inc., Chichester (2002)Google Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans on Evol. Comp. 6, 182–197 (2000)CrossRefGoogle Scholar
  9. 9.
    Huang, C., Bieniawski, S., Wolpert, D., Strauss, C.: A comparative study of prob. collectives based multi-agent systems and gas. In: GECCO (June 2005)Google Scholar
  10. 10.
    Jaskiewicz, A.: On the perf. of multiple objective genetic local search on the 0/1 knapsack problem: a comparative exp. IEEE Trans. E.C. 6(4), 402–412 (2002)CrossRefGoogle Scholar
  11. 11.
    de Jong, E., Watson, R., Pollack, J.: Reducing bloat and promoting diversity using multi-objective methods. In: GECCO, pp. 11–18. MK (2001)Google Scholar
  12. 12.
    Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proc. 2002 Congress on Evolutionary Computation, pp. 711–716 (2002)Google Scholar
  13. 13.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuo, T., Hwang, S.Y.: Using disruptive selection to maintain diversity in genetic algorithms. Applied Intelligence, 257–267Google Scholar
  15. 15.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d and nsgaii. IEEE Trans. Evolutionary Computation (2008)Google Scholar
  16. 16.
    Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comp. 13(2), 229–242 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, X.: Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Macready, W., Wolpert, D.H.: Distributed optimization. In: International Conference on Complex Systems, Boston, MA (May 2004)Google Scholar
  19. 19.
    Morrison, J., Oppacher, F.: Maintaining genetic diversity in genetic algorithms through co-evolution. In: Mercer, R.E. (ed.) Canadian AI 1998. LNCS, vol. 1418, pp. 128–138. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization (mopso). In: Proc. of 2008 IEEE Swarm Intelligence Symposium, pp. 26–33. IEEE Service Center, Los Alamitos (2008)Google Scholar
  21. 21.
    Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: Smpso: A new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symp. on MCDM, pp. 66–73. IEEE, Los Alamitos (2009)Google Scholar
  22. 22.
    Rajnarayan, D., Wolpert, D.H., Kroo, I.: Optimization under uncertainty using probability collectives. In: 10th AIAA/ISSMO M.A.O. Conf. (2006)Google Scholar
  23. 23.
    Shore, J., Johnson, R.: Properties of cross-entropy minimization. IEEE Transactions on Information Theory 27(4), 472–482 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sierra, M.R., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Waldock, A., Nicholson, D.: Cooperative decentralised data fusion using probability collectives. In: ATSN 2007, at AAMAS 2007, pp. 47–54 (2007)Google Scholar
  26. 26.
    Wolpert, D.H.: Information Theory - the bridge connecting bounded rational game theory and statistical physics (2004)Google Scholar
  27. 27.
    Wolpert, D., Strauss, C., Rajnarayan, D.: Advances in distributed optimization using probability collectives. Advances in Complex Systems 9 (2006)Google Scholar
  28. 28.
    Wolpert, D.: Collective intelligence. In: Fogel, D., Robinson, D. (eds.) Computational Intelligence Beyond 2001: Real and Imagined. Wiley, Chichester (2001)Google Scholar
  29. 29.
    Wolpert, D., Bieniawski, S.: Distributed control by lagrangian steepest descent. In: Proc. 43rd IEEE Conf. on Decision and Control, pp. 1562–1567 (2004)Google Scholar
  30. 30.
    Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: CEC 2009: Proceedings of the Eleventh conference on Congress on Evolutionary Computation, pp. 203–208. Institute of Electrical and Electronics Engineers Inc. (2009)Google Scholar
  31. 31.
    Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: MOO test inst. for CEC 09 spec. session and comp. Tech. Rep. CES-887, U. Essex and NTU (2008)Google Scholar
  32. 32.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antony Waldock
    • 1
  • David Corne
    • 2
  1. 1.Advanced Technology Centre, BAE SystemsBristolUK
  2. 2.School of MACSHeriot-Watt UniversityEdinburghUK

Personalised recommendations