Skip to main content

Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Abstract

Gas chemical sensors are strongly affected by drift, i.e., changes in sensors’ response with time, that may turn statistical models commonly used for classification completely useless after a period of time. This paper presents a new classifier that embeds an adaptive stage able to reduce drift effects. The proposed system exploits a state-of-the-art evolutionary strategy to iteratively tweak the coefficients of a linear transformation able to transparently transform raw measures in order to mitigate the negative effects of the drift. The system operates continuously. The optimal correction strategy is learnt without a-priori models or other hypothesis on the behavior of physical-chemical sensors. Experimental results demonstrate the efficacy of the approach on a real problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearce, T.C., Shiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of machine olfaction. Wiley-VHC Ed., Weinheim (2003)

    Google Scholar 

  2. Pardo, M., Sberveglieri, G.: Electronic olfactory systems based on metal oxide semiconductor sensor arrays. MRS Bulletin 29(10), 703–708 (2004)

    Google Scholar 

  3. Gutierrez-Osuna, R.: Pattern Analysis for Machine Olfaction: A Review, June 2002, vol. 2, pp. 189–202 (2002)

    Google Scholar 

  4. Polster, A., Fabian, M., Villinger, H.: Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geosyst. 10(Q08008) (2009)

    Google Scholar 

  5. Chen, D.Y., Chan, P.K.: An Intelligent ISFET Sensory System With Temperature and Drift Compensation for Long-Term Monitoring. IEEE Sensor Journal 8(11-12), 1948–1959 (2008)

    Article  Google Scholar 

  6. Owens, W.B., Wong, A.P.S.: An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by theta–S climatology. Deep-Sea Research Part I-Oceanographic Research Papers 56(3), 450–457 (2009)

    Article  Google Scholar 

  7. Aliwell, S.R., et al.: Ozone sensors based on WO3: a model for sensor drift and a measurement correction method. Measurement Science & Technology 12(6), 684–690 (2001)

    Article  Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  9. Jain, A.K., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

    Article  Google Scholar 

  10. Dasarathy, B.V. (ed.): Nearest neighbor (NN) norms: Nn pattern classification

    Google Scholar 

  11. Pardo, M., Sberveglieri, G.: Classification of electronic nose data with support vector machines. Sensors and Actuators B: Chemical, 730–737, June 29 (2005)

    Google Scholar 

  12. Pardo, M., Sberveglieri, G.: Random forests and nearest shrunken centroids for the classification of sensor array data. Sensors And Actuators B-Chemical 131, 93–99 (2008)

    Article  Google Scholar 

  13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, Oxford (1995)

    Google Scholar 

  14. Sisk, B.C., Lewis, N.S.: Comparison of analytical methods and calibration methods for correction of detector response drift in arrays of carbon black-polymer composite vapor detector. Sensors and Actuators B: Chemical, 249–268, January 24 (2005)

    Google Scholar 

  15. Artursson, T., et al.: Drift correction for gas sensors using multivariate methods. Journal of Chemometrics 14, 711–723 (1999); Special Issue: Proceedings of the SSC6, HiT/TF, Norway (August 1999)

    Google Scholar 

  16. Di Natale, C., Martinelli, E., D’Amico, A.: Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sensors and actuators. B, Chemical 82(2-3), 158–165 (2002)

    Article  Google Scholar 

  17. Marco, S., Ortega, A., Pardo, A., Samitier, J.: Gas Identification with Tin Oxide Sensor Array and Self-Organizing Maps: Adaptive Correction of Sensor Drifts. IEEE Transactions on Instrumentation and Measurement 47, 316–321 (1998)

    Google Scholar 

  18. Vlachos, D.S., Fragoulis, D.K., Avaritsiotis, J.N.: An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors. Sensors and Actuators B: Chemical, 223–228, December 15 (1997)

    Google Scholar 

  19. Hansen, N.: The CMA evolution strategy: a comparing review, towards a new evolutionary computation. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Advances on estimation of distribution algorithms, pp. 75–102. Springer, Heidelberg (2006)

    Google Scholar 

  20. Kuhn, K.: Building Predictive Models in R Using the caret Package. Journal of Statistical Software 28(5), 1–26 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Carlo, S., Falasconi, M., Sánchez, E., Scionti, A., Squillero, G., Tonda, A. (2010). Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12239-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12238-5

  • Online ISBN: 978-3-642-12239-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics