Advertisement

An Evolutionary Method for Model-Based Automatic Segmentation of Lower Abdomen CT Images for Radiotherapy Planning

  • Vitoantonio Bevilacqua
  • Giuseppe Mastronardi
  • Alessandro Piazzolla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)

Abstract

Segmentation of target organs and organs at risk is a fundamental task in radiotherapy treatment planning. Since its completion carried out by a radiation oncologist is really time-consuming, there is the need to perform it automatically. Unfortunately there is not a universal method capable to segment accurately every anatomical structure in every medical image, so each problem requires a study and an own solution. In this paper we analyze the problem of segmentation of bladder, prostate and rectum in lower abdomen CT images and propose a novel algorithm to solve it. It builds a statistical model of the organs analyzing a training set, generates potential solutions and chooses the segmentation result evaluating them on the basis of an aprioristic knowledge and the characteristics of patient image, using Genetic Algorithms. Out method has been tested qualitatively and quantitatively and offered good performance.

Keywords

Segmentation lower abdomen CT radiotherapy planning genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alander, J.T.: An indexed bibliography of genetic algorithms in optics and image processing. Report series no. 94-1-OPTICS, Department of Electrical Engineering and Automation, University of Vaasa, Finland (2000)Google Scholar
  2. 2.
    Bevilacqua, V., Aulenta, A., Carioggia, E., Mastronardi, G., Menolascina, F., Simeone, G., Paradiso, A., Scarpa, A., Taurino, D.: Metallic artifacts removal in breast CT images for treatment planning in radiotherapy by means of supervised and unsupervised neural network algorithms. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 1355–1363. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning in coplanar radiotherapy. Image and Vision Computing 25(2), 196–203 (2007)Google Scholar
  4. 4.
    Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Im. and Vis. Comp. 17, 881–895 (1999)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. Im. and Vis. Comp. 12(6), 355–366 (1994)CrossRefGoogle Scholar
  6. 6.
    Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of bladder and prostate using coupled 3D deformable models. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Holland, J.: Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge (1992)Google Scholar
  8. 8.
    Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  9. 9.
    GAlib: A C++ library of genetic algorithms components, http://lancet.mit.edu/ga
  10. 10.
    Ghosh, P., Mitchell, M.: Segmentation of medical images using a genetic algorithm. In: Proc. of the 8th annual conference on genetic and evolutionary computation, pp. 1171–1178 (2006)Google Scholar
  11. 11.
    Lee, C.C., Chung, P.C.: Identifying abdominal organs using robust fuzzy inference model. In: IEEE int. conf. on networking, sensing and control, vol. 2, pp. 1289–1294 (2004)Google Scholar
  12. 12.
    Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Transactions on Information Technology in Biomedicine 13(2), 166–173 (2009)CrossRefGoogle Scholar
  13. 13.
    Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N.: Image segmentation in treatment planning for prostate cancer using the region growing technique. The British journal of radiology 74, 243–248 (2001)Google Scholar
  14. 14.
    McIntosh, C., Hamarneh, G.: Genetic algorithm driven statistically deformed models for medical image segmentation. In: ACM Workshop on medical applications of genetic and evolu-tionary computation, in conjunction with GECCO (2006)Google Scholar
  15. 15.
    Pekar, V., McNutt, T.R., Kaus, M.R.: Automated model-based organ delineation for radio-therapy planning in prostatic region. International Journal of Radiation Oncology Biology Physics 60(3), 973–980 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
    • 2
  • Giuseppe Mastronardi
    • 1
    • 2
  • Alessandro Piazzolla
    • 1
  1. 1.Department of Electrical and ElectronicsPolytechnic of BariBariItaly
  2. 2.e.B.I.S. s.r.l. (electronic Business in Security)Spin-Off of Polytechnic of BariBariItaly

Personalised recommendations