New Genetic Operators in the Fly Algorithm: Application to Medical PET Image Reconstruction

  • Franck Patrick Vidal
  • Jean Louchet
  • Jean-Marie Rocchisani
  • Évelyne Lutton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


This paper presents an evolutionary approach for image reconstruction in positron emission tomography (PET). Our reconstruction method is based on a cooperative coevolution strategy (also called Parisian evolution): the “fly algorithm”. Each fly is a 3D point that mimics a positron emitter. The flies’ position is progressively optimised using evolutionary computing to closely match the data measured by the imaging system. The performance of each fly is assessed using a “marginal evaluation” based on the positive or negative contribution of this fly to the performance of the population. Using this property, we propose a “thresholded-selection” method to replace the classical tournament method. A mitosis operator is also proposed. It is triggered to automatically increase the population size when the number of flies with negative fitness becomes too low.


Positron Emission Tomography Genetic Operator Radioactivity Concentration Phantom Model Positron Emission Tomography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badawi, R.D.: Nuclear medicine. Phys. Educ. 36(6), 452–459 (2001)CrossRefGoogle Scholar
  2. 2.
    Bosman, P.A.N., Alderliesten, T.: Evolutionary algorithms for medical simulations: a case study in minimally-invasive vascular interventions. In: Workshops on Genetic and Evolutionary Computation 2005, pp. 125–132 (2005)Google Scholar
  3. 3.
    Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 17(12), 881–895 (1999)CrossRefGoogle Scholar
  5. 5.
    Fahey, F.H.: Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49 (2002)Google Scholar
  6. 6.
    Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)CrossRefGoogle Scholar
  7. 7.
    Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics (2001)Google Scholar
  8. 8.
    Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proc. of IEEE 91, 1588–1611 (2003)CrossRefGoogle Scholar
  9. 9.
    Louchet, J.: Stereo analysis using individual evolution strategy. In: International Conference on Pattern Recognition 2000, p. 1908 (2000)Google Scholar
  10. 10.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)CrossRefGoogle Scholar
  11. 11.
    Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, E., Rocchisani, J.: Artificial evolution for 3D PET reconstruction. In: Artificial Evolution 2009. LNCS. Springer, Heidelberg (2009) (to appear)Google Scholar
  12. 12.
    Vidal, F.P., Louchet, J., Lutton, E., Rocchisani, J.: PET reconstruction using a cooperative coevolution strategy in LOR space. In: IEEE Medical Imaging Conference 2009 (2009) (to appear)Google Scholar
  13. 13.
    Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Zaidi, H. (ed.): Quantitative Analysis in Nuclear Medicine Imaging. Springer, US (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Franck Patrick Vidal
    • 1
  • Jean Louchet
    • 2
  • Jean-Marie Rocchisani
    • 1
    • 3
  • Évelyne Lutton
    • 1
  1. 1.INRIA Saclay - Île-de-France/APISOrsay CedexFrance
  2. 2.ArteniaChâtillonFrance
  3. 3.Paris XIII University, UFR SMBH & Avicenne hospitalBobignyFrance

Personalised recommendations