Hand Posture Recognition Using Real-Time Artificial Evolution

  • Benoit Kaufmann
  • Jean Louchet
  • Evelyne Lutton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


In this paper, we present a hand posture recognition system (configuration and position) we designed as part of a gestural man-machine interface. After a simple image preprocessing, the parameter space (corresponding to the configuration and spatial position of the user’s hand) is directly explored using a population of points evolved via an Evolution Strategy. Giving the priority to exploring the parameter space rather than the image, is an alternative to the classical generalisation of the Hough Transform and allows to meet the real-time constraints of the project. The application is an Augmented Reality prototype for a long term exhibition at the Cité des Sciences, Paris. As it will be open to the general public, rather than using conventional peripherals like a mouse or a joystick, a more natural interface has been chosen, using a microcamera embedded into virtual reality goggles in order to exploit the images of the user’s hand as input data and enable the user to manipulate virtual objects without any specific training.


Video Sequence Input Image Augmented Reality Virtual Object Hough Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: International Conference on Genetic Algorithms, July 13-16, pp. 2–10 (1991)Google Scholar
  2. 2.
    Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  3. 3.
    Carbini, S., Viallet, J.E., Bernier, O.: Pointing gesture visual recognition by body feature detection and tracking. Computational Imaging and Vision 32, 203–208 (2006)CrossRefGoogle Scholar
  4. 4.
    Darby, J., Li, B., Costen, N.: Activity classification for interactive game interfaces. Int. J. Comput. Games Technol. 2008, 1–7 (2008)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.A.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc., Reading (1989)zbMATHGoogle Scholar
  6. 6.
    Harper, R., Rauterberg, M., Combetto, M. (eds.): ICEC 2006. LNCS, vol. 4161. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Hough, P.V.C.: Methods and means of recognizing complex patterns. Tech. rep., US Patent 3.069.654.18 (December 1962)Google Scholar
  8. 8.
    Ionescu, B., Coquin, D., Lambert, P., Buzuloiu, V.: Dynamic hand gesture recognition using the skeleton of the hand. EURASIP J. Appl. Signal Process. 2005, 2101–2109 (2005)Google Scholar
  9. 9.
    Kim, H.J., Kwak, K.C., Lee, J.: Bimanual Hand Tracking. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 955–963. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kirishima, T., Manabe, Y., Sato, K., Chihara, K.: Real-time multiview recognition of human gestures by distributed image processing. J. Image Video Process. 2010, 1–13 (2010)CrossRefGoogle Scholar
  11. 11.
    Louchet, J.: From Hough to Darwin: an Individual Evolutionary Strategy applied to Artificial Vision. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999. LNCS, vol. 1829. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Lutton, E., Martinez, P.: A Genetic Algorithm for the Detection of 2D Geometric Primitives in Images. In: 12-ICPR, Jerusalem, Israel, October 9-13 (1994)Google Scholar
  13. 13.
    Maimon, D., Yeshurun, Y.: Hand Detection by Direct Convexity Estimation. In: Tistarelli, M., Bigun, J., Grosso, E. (eds.) Advanced Studies in Biometrics. LNCS, vol. 3161, pp. 105–113. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Maître, H.: Un panorama de la transformation de Hough. Traitement du Signal 2(4), 305–317 (1985)MathSciNetGoogle Scholar
  15. 15.
    Rechenberg, I.: Evolution Strategy : Nature’s way of optimization. In: Bergman, H.W. (ed.) Optimization : methods and and applications. Possibilities and Limitations. Lecture Notes in Engineering, vol. 17, pp. 106–126. Springer, Berlin (1989)Google Scholar
  16. 16.
    Stødle, D., Hagen, T.M.S., Bjørndalen, J.M., Anshus, O.J.: Gesture-based, touch-free multi-user gaming on wall-sized, high-resolution tiled displays. Journal of Virtual Reality and Broadcasting 5(10) (November 2008)Google Scholar
  17. 17.
    Zhao, S., Tan, W., Wen, S., Liu, Y.: An improved algorithm of hand gesture recognition under intricate background. In: Xiong, C.-H., Liu, H., Huang, Y., Xiong, Y.L. (eds.) ICIRA 2008. LNCS (LNAI), vol. 5314, pp. 786–794. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Benoit Kaufmann
    • 1
  • Jean Louchet
    • 2
  • Evelyne Lutton
    • 1
  1. 1.INRIA SaclayParc Orsay UniversitéOrsay Cedex
  2. 2.ARTENIAChatillon

Personalised recommendations