Markerless Multi-view Articulated Pose Estimation Using Adaptive Hierarchical Particle Swarm Optimisation

  • Spela Ivekovic
  • Vijay John
  • Emanuele Trucco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


In this paper, we present a new adaptive approach to multi-view markerless articulated human body pose estimation from multi-view video sequences, using Particle Swarm Optimisation (PSO). We address the computational complexity of the recently developed hierarchical PSO (HPSO) approach, which successfully estimated a wide range of different motion with a fixed set of parameters, but incurred an unnecessary overhead in computational complexity. Our adaptive approach, called APSO, preserves the black-box property of the HPSO in that it requires no parameter value input from the user. Instead, it adaptively changes the value of the search parameters online, depending on the quality of the pose estimate in the preceding frame of the sequence. We experimentally compare our adaptive approach with HPSO on four different video sequences and show that the computational complexity can be reduced without sacrificing accuracy and without requiring any user input or prior knowledge about the estimated motion type.


Particle Swarm Optimisation Algorithm Motion Capture Inertia Weight Iterative Close Point Preceding Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balan, A.O., Sigal, L., Black, M.J.: A quantitative evaluation of video-based 3d person tracking. In: ICCCN 2005, pp. 349–356 (2005)Google Scholar
  2. 2.
    Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and pose from images. In: CVPR 2007 (2007)Google Scholar
  3. 3.
    Bissacco, A., Yang, M.H., Soatto, S.: Fast human pose estimation using appearance and motion via multi-dimensional boosting regression. In: CVPR 2007 (2007)Google Scholar
  4. 4.
    Caillette, F., Galata, A., Howard, T.: Real-time 3-d human body tracking using learnt models of behaviour. CVIU 109(2), 112–125 (2008)Google Scholar
  5. 5.
    Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2) (2005)Google Scholar
  6. 6.
    Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture - a multi-layer framework. IJCV (online first) (2008)Google Scholar
  7. 7.
    Ivekovic, S., Trucco, E., Petillot, Y.: Human body pose estimation with particle swarm optimisation. Evolutionary Computation 16(4) (2008)Google Scholar
  8. 8.
    John, V., Ivekovic, S., Trucco, E.: Articulated human tracking using HPSO. In: Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, pp. 531–538 (2009)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE ICNN, vol. 4, pp. 1942–1948 (1995)Google Scholar
  10. 10.
    Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and tracking using voxel data. IJCV 53(3), 199–223 (2003)CrossRefGoogle Scholar
  11. 11.
    Moeslund, T.B., Hilton, A., Krueger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104(2-3), 90–126 (2006)Google Scholar
  12. 12.
    Muendermann, L., Corazza, S., Andriacchi, T.P.: Accurately measuring human movement using articulated icp with soft-joint constraints and a repository of articulated models. In: CVPR 2007 (2007)Google Scholar
  13. 13.
    Ohya, J., Kishino, F.: Human posture estimation from multiple images using genetic algorithm. In: ICPR, vol. 1, pp. 750–753 (1994)Google Scholar
  14. 14.
    Peursum, P., Venkatesh, S., West, G.: Tracking-as-recognition for articulated full-body human motion analysis. In: CVPR 2007 (2007)Google Scholar
  15. 15.
    Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation 13(3), 1–10 (2009)CrossRefGoogle Scholar
  16. 16.
    Poppe, R.: Vision-based human motion analysis. CVIU 108(1-2), 4–18 (2007)Google Scholar
  17. 17.
    Rosenhahn, B., Brox, T., Seidel, H.P.: Scaled motion dynamics for markerless motion capture. In: CVPR (2007)Google Scholar
  18. 18.
    Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering 61(13) (2004)Google Scholar
  19. 19.
    Shaji, A., Siddiquie, B., Chandran, S., Suter, D.: Human pose extraction from monocular videos using constrained non-rigid factorization. In: BMVC (2008)Google Scholar
  20. 20.
    Shen, S., Deng, H., Liu, Y.: Probability evolutionary algorithm based human motion tracking using voxel data. In: Proceedings of IEEE CEC 2008, pp. 44–49 (2008)Google Scholar
  21. 21.
    Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)Google Scholar
  22. 22.
    Vicon: Motion capture systems. (November 2008),
  23. 23.
    Wang, P., Rehg, J.M.: A modular approach to the analysis and evaluation of particle filters for figure tracking. In: CVPR 2006, vol. 1, pp. 790–797 (2006)Google Scholar
  24. 24.
    Zhao, X., Liu, Y.: Generative tracking of 3d human motion by hierarchical annealed genetic algorithm. Pattern Recognition 41(8), 2470–2483 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Spela Ivekovic
    • 1
  • Vijay John
    • 1
  • Emanuele Trucco
    • 1
  1. 1.School of ComputingUniversity of DundeeDundee

Personalised recommendations