Advertisement

Evolving Bot AI in UnrealTM

  • Antonio Miguel Mora
  • Ramón Montoya
  • Juan Julián Merelo
  • Pablo García Sánchez
  • Pedro Ángel Castillo
  • Juan Luís Jiménez Laredo
  • Ana Isabel Martínez
  • Anna Espacia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)

Abstract

This paper describes the design, implementation and results of an evolutionary bot inside the PC game UnrealTM, that is, an autonomous enemy which tries to beat the human player and/or some other bots. The default artificial intelligence (AI) of this bot has been improved using two different evolutionary methods: genetic algorithms (GAs) and genetic programming (GP). The first one has been applied for tuning the parameters of the hard-coded values inside the bot AI code. The second method has been used to change the default set of rules (or states) that defines its behaviour. Both techniques yield very good results, evolving bots which are capable to beat the default ones. The best results are yielded for the GA approach, since it just does a refinement following the default behaviour rules, while the GP method has to redefine the whole set of rules, so it is harder to get good results.

Keywords

Genetic Algorithm Human Player First Person Shooter State Transition Rule Genetic Programming Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booth, T.L.: Sequential Machines and Automata Theory, 1st edn. John Wiley and Sons, Inc., New York (1967)zbMATHGoogle Scholar
  2. 2.
    Cho, B.H., Jung, S.H., Seong, Y.R., Oh, H.R.: Exploiting intelligence in fighting action games using neural networks. IEICE - Trans. Inf. Syst. E89-D(3), 1249–1256 (2006)CrossRefGoogle Scholar
  3. 3.
    Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  4. 4.
    Koza, J.R.: Genetic Programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  5. 5.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  6. 6.
    Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-competitive agents in modern computer games. In: IEEE Congress on Computational Intelligence, CEC 2006, pp. 777–784 (2006)Google Scholar
  7. 7.
    Small, R., Bates-Congdon, C.: Agent Smith: Towards an evolutionary rule-based agent for interactive dynamic games. In: IEEE Congress on Evolutionary Computation, CEC 2009, May 2009, pp. 660–666 (2009)Google Scholar
  8. 8.
    Soni, B., Hingston, P.: Bots trained to play like a human are more fun. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008, IEEE World Congress on Computational Intelligence, pp. 363–369 (June 2008)Google Scholar
  9. 9.
    Wikipedia: Unreal — wikipedia, the free encyclopedia (2009), http://en.wikipedia.org/wiki/Unreal

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antonio Miguel Mora
    • 1
  • Ramón Montoya
    • 2
  • Juan Julián Merelo
    • 1
  • Pablo García Sánchez
    • 1
  • Pedro Ángel Castillo
    • 1
  • Juan Luís Jiménez Laredo
    • 1
  • Ana Isabel Martínez
    • 3
  • Anna Espacia
    • 3
  1. 1.Departamento de Arquitectura y Tecnología de ComputadoresUniversidad de GranadaSpain
  2. 2.Consejeria de Justicia y Administración PúblicaJunta de AndalucíamSpain
  3. 3.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaSpain

Personalised recommendations