Towards a Generic Framework for Automated Video Game Level Creation

  • Nathan Sorenson
  • Philippe Pasquier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6024)


This paper presents a generative system for the automatic creation of video game levels. Our approach is novel in that it allows high-level design goals to be expressed in a top-down manner, while existing bottom-up techniques do not. We use the FI-2Pop genetic algorithm as a natural way to express both constraints and optimization goals for potential level designs. We develop a genetic encoding technique specific to level design, which proves to be extremely flexible. Example levels are generated for two different genres of game, demonstrating the system’s broad applicability.


video games level design procedural content genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Remo, C.: MIGS: Far Cry 2’s Guay on the importance of procedural content. Gamasutra (November 2008),
  2. 2.
    Meier, S.: Civilization. MicroProse (1991)Google Scholar
  3. 3.
    The NetHack DevTeam: Nethack (2009),
  4. 4.
    Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.J.: Exploring a two-market genetic algorithm. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 415–422. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  5. 5.
    Miyamoto, S., Yamauchi, H., Tezuka, T.: Super Mario Bros. Nintendo (1987)Google Scholar
  6. 6.
    Miyamoto, S., Nakago, T., Tezuka, T.: The Legend of Zelda. Nintendo (1986)Google Scholar
  7. 7.
    Sorenson, N., Pasquier, P.: The evolution of fun: Towards a challenge-based model of pleasure in video games. In: ICCC-X: First International Conference on Computational Creativity, Lisbon, Portugal, pp. 258–267 (2010)Google Scholar
  8. 8.
    Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium on Computational Intelligence and Games, pp. 111–118 (2008)Google Scholar
  9. 9.
    Yannakakis, G., Hallam, J.: Towards capturing and enhancing entertainment in computer games. Advances in Artificial Intelligence, 432–442 (2006)Google Scholar
  10. 10.
    Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2d platformers. In: FDG 2009: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 175–182. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Pedersen, C., Togelius, J., Yannakakis, G.: Modeling player experience in Super Mario Bros. In: IEEE Symposium on Computational Intelligence and Games (September 2009)Google Scholar
  12. 12.
    Hemert, J.I.: Comparing classical methods for solving binary constraint satisfaction problems with state of the art evolutionary computation. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 82–91. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bushnell, N., Bristow, S., Wozniak, S.: Breakout. Atari (1976)Google Scholar
  15. 15.
    Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, Ann Arbor, MI, USA (1997)Google Scholar
  16. 16.
    Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 3 (2005)CrossRefGoogle Scholar
  17. 17.
    Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals, October 2003. The MIT Press, Cambridge (2003)Google Scholar
  18. 18.
    Koster, R.: Theory of Fun for Game Design. Paraglyph Press, Scottsdale (2004)Google Scholar
  19. 19.
    Juul, J.: Fear of failing? the many meanings of difficulty in video games. In: Yao, X., Burke, E., Lozano, J.A., Smith, J., Merelo-Guerv, J.J., Bullinaria, J.A., Rowe, J., Tino, P., Kabn, A., Schwefel, H.P. (eds.) The Video Game Theory Reader, vol. 2, pp. 237–252. Routledge, New York (2009)Google Scholar
  20. 20.
    Humphreys, P.: Mathematical modeling in the social sciences. In: Turner, S.P., Roth, P.A. (eds.) The Blackwell guide to the philosophy of the social sciences, pp. 166–184. Wiley-Blackwell, New Jersey (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nathan Sorenson
    • 1
  • Philippe Pasquier
    • 1
  1. 1.School of Interactive Arts and TechnologySimon Fraser University SurreySurrey

Personalised recommendations