Skip to main content

Role of Centrality in Network-Based Prioritization of Disease Genes

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6023))

Abstract

High-throughput molecular interaction data have been used effectively to prioritize candidate genes that are linked to a disease, based on the notion that the products of genes associated with similar diseases are likely to interact with each other heavily in a network of protein-protein interactions (PPIs). An important challenge for these applications, however, is the incomplete and noisy nature of PPI data. Random walk and network propagation based methods alleviate these problems to a certain extent, by considering indirect interactions and multiplicity of paths. However, as we demonstrate in this paper, such methods are likely to favor highly connected genes, making prioritization sensitive to the skewed degree distribution of PPI networks, as well as ascertainment bias in available interaction and disease association data. Here, we propose several statistical correction schemes that aim to account for the degree distribution of known disease and candidate genes. We show that, while the proposed schemes are very effective in detecting loosely connected disease genes that are missed by existing approaches, this improvement might come at the price of more false negatives for highly connected genes. Motivated by these results, we develop uniform prioritization methods that effectively integrate existing methods with the proposed statistical correction schemes. Comprehensive experimental results on the Online Mendelian Inheritance in Man (OMIM) database show that the resulting hybrid schemes outperform existing methods in prioritizing candidate disease genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, H.G., van Driel, M.A.: From syndrome families to functional genomics. Nat. Rev. Genet. 5(7), 545–551 (2004)

    Article  Google Scholar 

  2. Glazier, A.M., Nadeau, J.H., Aitman, T.J.: Finding Genes That Underlie Complex Traits. Science 298(5602), 2345–2349 (2002)

    Article  Google Scholar 

  3. Lage, K., Karlberg, E., Storling, Z., Olason, P., Pedersen, A., Rigina, O., Hinsby, A., Tumer, Z., Pociot, F., Tommerup, N., Moreau, Y., Brunak, S.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Bio. 25(3), 309–316 (2007)

    Article  Google Scholar 

  4. Adie, E., Adams, R., Evans, K., Porteous, D., Pickard, B.: SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6), 773–774 (2006)

    Article  Google Scholar 

  5. Turner, F., Clutterbuck, D., Semple, C.: Pocus: mining genomic sequence annotation to predict disease genes. Genome Biology 4(11), R75 (2003)

    Article  Google Scholar 

  6. Chen, J., Aronow, B., Jegga, A.: Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10(1), 73 (2009)

    Article  Google Scholar 

  7. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. (2006), jmg.2006.041376

    Google Scholar 

  8. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.A.A.: The human disease network. PNAS 104(21), 8685–8690 (2007)

    Article  Google Scholar 

  9. Ideker, T., Sharan, R.: Protein networks in disease. Genome research 18(4), 644–652 (2008)

    Article  Google Scholar 

  10. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  11. Vanunu, O., Sharan, R.: A propagation based algorithm for inferring gene-disease associations. In: Proceedings of German Conference on Bioinformatics (2008)

    Google Scholar 

  12. Edwards, A.M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., Gerstein, M.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics 18(10), 529–536 (2002)

    Article  Google Scholar 

  13. George, R.A., Liu, J.Y., Feng, L.L., Bryson-Richardson, R.J., Fatkin, D., Wouters, M.A.: Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucl. Acids Res. 34(19), e130 (2006)

    Article  Google Scholar 

  14. van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining analysis of the human phenome. EJHG 14(5), 535–542 (2006)

    Article  Google Scholar 

  15. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty 2, 353–398 (1996)

    Google Scholar 

  16. Tong, H., Faloutsos, C., Pan, J.Y.: Random walk with restart: fast solutions and applications. Knowledge and Information Systems 14(3), 327–346 (2008)

    Article  MATH  Google Scholar 

  17. Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 10(1), 283 (2009)

    Article  Google Scholar 

  18. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: KDD 2006: Proceedings of the 12th ACM SIGKDD, pp. 404–413. ACM, New York (2006)

    Google Scholar 

  19. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinf. 21, i302–i310 (2005)

    Article  Google Scholar 

  20. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  21. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucl. Acids Res. 35(suppl. 1), D26–D31 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erten, S., Koyutürk, M. (2010). Role of Centrality in Network-Based Prioritization of Disease Genes. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2010. Lecture Notes in Computer Science, vol 6023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12211-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12211-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12210-1

  • Online ISBN: 978-3-642-12211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics