Skip to main content

Game Theoretical Interactions of Moving Agents

  • Chapter
  • First Online:
Simulating Complex Systems by Cellular Automata

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Macroscopic outcomes in a social system resulting from interactions between individuals can be quite different from anyone’s intent. For instance, empirical investigations [1] have shown that most colored people prefer multi-racial neighborhoods, and many white people find a certain fraction of other races in their neighborhood acceptable. So one could think that integrated neighborhoods should be widely observed, but empirically this is not true. One rather finds segregated neighborhoods, i.e. separate urban quarters, which also applies to people with different social and economic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. Clark, M. Fossett, Understanding the social context of the Schelling segregation model. Proc. Natl. Acad. Sci. 105, 4109–4114 (2008)

    Article  Google Scholar 

  2. M. Fossett, Ethnic preferences, social distance dynamics, and residential segregation: theoretical explorations using simulation analysis. J. Math. Socio. 30, 185–274 (2006)

    Article  Google Scholar 

  3. O.D. Duncan, B. Duncan, Residential distribution and occupational stratefication. Am. J. Sociol. 60, 493–503 (1955)

    Article  Google Scholar 

  4. S.F. Reardon, G. Firebaugh, Response: Segregation and social distance – a generalized approach to segregation measurement. Sociol. Methodol. 32, 85–101 (2002)

    Article  Google Scholar 

  5. T.C. Schelling, Dynamic models of segregation. J. Math. Socio. 1, 143–186 (1971)

    Article  Google Scholar 

  6. T.C. Schelling, Micromotives and Macrobehavior. (Norton, New York, 1978)

    Google Scholar 

  7. D.S. Massey, American apartheid: segregation and the making of the underclass. Am. J. Sociol. 96, 329–357 (1990)

    Article  Google Scholar 

  8. J. Yinger, Closed Doors, Opportunities Lost: The Continuing Costs of Housing Discrimination. (Russell Sage Found, New York 1995).

    Google Scholar 

  9. M. Macy, A.V.D. Rijt, Ethnic preferences and residential segregation: Theoretical explorations beyond Detroit. J. Math. Socio. 30, 275–288 (2006)

    Article  Google Scholar 

  10. D. Helbing, T. Platkowski, Drift- or fluctuation-induced ordering and self-organization in driven many-particle systems. Europhys. Lett. 60, 227–233 (2002)

    Article  Google Scholar 

  11. D. Helbing, T. Vicsek, Optimal self-organization. N. J. Phys. 1, 13.1–13.17 (1999)

    Article  Google Scholar 

  12. D. Helbing, W. Yu, Migration as a mechanism to promote cooperation. Adv. Compl. Syst. 11, 641–652 (2008)

    Article  MATH  Google Scholar 

  13. D. Helbing, W. Yu, The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. 106, 3680–3685 (2009), and Supplementary Information to this paper.

    Article  Google Scholar 

  14. P.F. Cressey, Population succession in Chicago: 1898–1930. Am. J. Sociol. 44, 59–69 (1938)

    Article  Google Scholar 

  15. M.A. Nowak, Five rules for the evolution of cooperation. Science 314, 1560 (2006)

    Article  Google Scholar 

  16. A. Axelrod, The Evolution of Cooperation. (Basic Books, New York 1984)

    Google Scholar 

  17. A.S. Griffin, S.A. West, A. Buckling, Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004)

    Article  Google Scholar 

  18. J. Von Neumann, O. Morgenstern, The Theory of Games and Economic Behavior. (Princeton University Press, Princeton 1944)

    Google Scholar 

  19. D. Fudenberg, J. Tirole, Game Theory. (MIT Press, Cambridge 1991)

    Google Scholar 

  20. A. Diekmann, Volunteer’s dilemma. J. Confl. Resolut. 29, 605–610 (1985)

    Article  Google Scholar 

  21. A. Flache, R. Hegselmann, Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. J. Artif. Soc. Soc. Simul. 4(6) (2001)

    Google Scholar 

  22. P. Schuster, K. Sigmund, Replicator dynamics. J. Theor. Biol. 100, 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  23. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  24. C. Hauert, M. Doebell, Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643–646 (2004)

    Article  Google Scholar 

  25. S. Hoogendoorn, P.H.L. Bovy, Simulation of pedestrian flows by optimal control and differential games. Opim. Control Appl. Mech. 24, 153–172 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. M.H. Vainstein, J.J. Arenzon, Disordered environments in spatial games. Phys. Rev. E 64, 051905 (2001)

    Article  Google Scholar 

  27. M.H. Vainstein, A.T.C. Silva, J.J. Arenzon, Does mobility decrease cooperation? J. Theor. Biol. 244, 722–728 (2006)

    Article  MathSciNet  Google Scholar 

  28. E.A. Sicardi, H. Fort, M.H. Vainstein, J.J. Arenzon, Random mobility and spatial structure often enhance cooperation. J. Theor. Biol. 256, 240–246 (2009)

    Article  MathSciNet  Google Scholar 

  29. J.M. Epstein, Generative Social Science. (Princeton University Press, Princeton 2006)

    MATH  Google Scholar 

  30. N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, The asymmetric exclusion process: Comparision of update procedures. J. Statist. Phys. 92, 151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. B.A. Huberman, N.S. Glance, Evolutionary games and computer simulations. Proc. Natl. Acad. Sci. 90, 7716–7718 (1993)

    Article  MATH  Google Scholar 

  32. H.P. Young, Individual Strategy and Social Structure. (Princeton University Press, Princeton, 1998)

    Google Scholar 

  33. M.W. Macy, Learning to cooperate: stochastic and tacit collusion in social exchange. Am. J. Sociol. 97, 808–843 (1991)

    Article  Google Scholar 

  34. M.W. Macy, A. Flache, Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. 99, 7229–7236 (2002)

    Article  Google Scholar 

  35. S. Wolfram, Theory and Applications of Cellular Automata. (World Scientific Publication, Singapore 1986)

    MATH  Google Scholar 

  36. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems. (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  37. E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays. Academic Press, New York, (1982)

    Google Scholar 

  38. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  39. S. Kirkpatrick, D. Sherrington, Infinite-ranged models of spin-glasses. Phys. Rev. B 17, 4384–4403 (1978)

    Article  Google Scholar 

  40. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  41. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985)

    Article  Google Scholar 

  42. D. Helbing, Pattern formation, social forces, and diffusion instability in games with success-driven motion. Eur. Phys. J. B 67, 345–356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. D. Helbing, A mathematical model for the behavior of individuals in a social field. J. Math. Sociol. 19, 189–219 (1994)

    Article  Google Scholar 

  44. S. Meloni, et al., Effects of mobility in a population of Prisoner’s Dilemma players. arXiv::0905.3189

    Google Scholar 

  45. C. Roca, Cooperation in Evolutionary Game Theory: Effects of Time and Structure. Ph.D. thesis, (Universidad Carlos III de Madrid, Department of Mathematics) (2009)

    Google Scholar 

  46. E.W. Burgess, Residential segregation in American cities. Ann Am Acad Polit Soc Sci 140, 105–115 (1928)

    Article  Google Scholar 

  47. H. Hoyt, The Structure and Growth of Residential Neighborhoods in American Cities Washington. Federal Housing Administration (Washion DC, 1939)

    Google Scholar 

  48. M. Lim, R. Metzler, Y.B. Yam, Global pattern formation and ethnic/cultural violence. Science 317, 1540–1544 (2007)

    Article  Google Scholar 

  49. N.B. Weidmann, D. Kuse, WarViews: Visualizing and animating geographic data on civil war. International Studies Perspectives 10, 36–48 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, W., Helbing, D. (2010). Game Theoretical Interactions of Moving Agents. In: Kroc, J., Sloot, P., Hoekstra, A. (eds) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12203-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12203-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12202-6

  • Online ISBN: 978-3-642-12203-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics