Skip to main content

Matching Points with Things

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Abstract

Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their number is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Aronov, B., Sharir, M., Suri, S.: Selecting distances in the plane. Algorithmica 9(5), 495–514 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aichholzer, O., Bereg, S., Dumitrescu, A., García, A., Huemer, C., Hurtado, F., Kano, M., Márquez, A., Rappaport, D., Smorodinsky, S., Souvaine, D., Urrutia, J., Wood, D.R.: Compatible geometric matchings. Computational Geometry: Theory and Applications 42, 617–626 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Aichholzer, O., Cabello, S., Fabila-Monroy, R., Flores-Penaloza, D., Hackl, T., Huemer, C., Hurtado, F., Wood, D.R.: Edge-Removal and Non-Crossing Configurations in Geometric Graphs. In: Proceedings of 24th European Conference on Computational Geometry, pp. 119–122 (2008)

    Google Scholar 

  4. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of computational geometry, pp. 121–154 (1999)

    Google Scholar 

  5. Arkin, E., Kedem, K., Mitchell, J., Sprinzak, J., Werman, M.: Matching points into noise regions: combinatorial bounds and algorithms. In: Proceedings of the second annual ACM-SIAM symposium on Discrete algorithms, pp. 42–51 (1991)

    Google Scholar 

  6. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers 28(9), 643–647 (1979)

    Article  MATH  Google Scholar 

  7. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching point sets with respect to the Earth Mover’s Distance. Computational Geometry: Theory and Applications 39(2), 118–133 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Cardoze, D., Schulman, L.: Pattern matching for spatial point sets. In: Proceedings. 39th Annual Symposium on Foundations of Computer Science (FOCS), 1998, pp. 156–165 (1998)

    Google Scholar 

  9. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete and Computational Geometry 6(1), 485–542 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chew, L., Dor, D., Efrat, A., Kedem, K.: Geometric pattern matching in d-dimensional space. Discrete and Computational Geometry 21(2), 257–274 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chew, L., Goodrich, M., Huttenlocher, D., Kedem, K., Kleinberg, J., Kravets, D.: Geometric pattern matching under Euclidean motion. Computational Geometry: Theory and Applications 7(1-2), 113–124 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Chew, L., Kedem, K.: Improvements on geometric pattern matching problems. In: Nurmi, O., Ukkonen, E. (eds.) SWAT 1992. LNCS, vol. 621, pp. 318–325. Springer, Heidelberg (1992)

    Google Scholar 

  13. Cohen, S.: Finding color and shape patterns in images. PhD thesis, Stanford University, Department of Computer Science (1999)

    Google Scholar 

  14. Colannino, J., Damian, M., Hurtado, F., Iacono, J., Meijer, H., Ramaswami, S., Toussaint, G.: An O(n logn)-time algorithm for the restriction scaffold assignment problem. Journal of Computational Biology 13(4), 979–989 (2006)

    Article  MathSciNet  Google Scholar 

  15. Efrat, A., Itai, A., Katz, M.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Formella, A.: Approximate point set match for partial protein structure alignment. In: Proceedings of Bioinformatics: Knowledge Discovery in Biology (BKDB 2005), Facultade Ciencias Lisboa da Universidade de Lisboa, pp. 53–57 (2005)

    Google Scholar 

  17. Giannopoulos, P., Veltkamp, R.: A pseudo-metric for weighted point sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–730. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s distance. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 220–227 (2004)

    Google Scholar 

  19. Heffernan, P.: Generalized approximate algorithms for point set congruence. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 373–373. Springer, Heidelberg (1993)

    Google Scholar 

  20. Heffernan, P., Schirra, S.: Approximate decision algorithms for point set congruence. In: Proceedings of the eighth annual Symposium on Computational geometry, pp. 93–101 (1992)

    Google Scholar 

  21. Huttenlocher, D., Kedem, K.: Efficiently computing the Hausdorff distance for point sets under translation. In: Proceedings of the Sixth ACM Symposium on Computational Geometry, pp. 340–349 (1990)

    Google Scholar 

  22. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane—a survey. Discrete & Computational Geometry 25, 551–570 (2003)

    MathSciNet  Google Scholar 

  23. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM Journal on Computing 12(1), 28–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lovász, L., Plummer, M.D.: Matching theory. Elsevier Science Ltd., Amsterdam (1986)

    MATH  Google Scholar 

  25. Rappaport, D.: Tight bounds for visibility matching of f-equal width objects. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 246–250. Springer, Heidelberg (2002)

    Google Scholar 

  26. Typke, R., Giannopoulos, P., Veltkamp, R., Wiering, F., Van Oostrum, R.: Using transportation distances for measuring melodic similarity. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2003), pp. 107–114 (2003)

    Google Scholar 

  27. Vaidya, P.: Geometry helps in matching. In: STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory of computing, pp. 422–425. ACM, New York (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aloupis, G. et al. (2010). Matching Points with Things. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics