Skip to main content

Minimum-Perimeter Intersecting Polygons

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Abstract

Given a set \({\mathcal S}\) of segments in the plane, a polygon P is an intersecting polygon of \({\mathcal S}\) if every segment in \({\mathcal S}\) intersects the interior or the boundary of P. The problem MPIP of computing a minimum-perimeter intersecting polygon of a given set of n segments in the plane was first considered by Rappaport in 1995. This problem is not known to be polynomial, nor it is known to be NP-hard. Rappaport (1995) gave an exponential-time exact algorithm for MPIP . Hassanzadeh and Rappaport (2009) gave a polynomial-time approximation algorithm with ratio \(\frac{\pi}{2} \approx 1.58\). In this paper, we present two improved approximation algorithms for MPIP: a 1.28-approximation algorithm by linear programming, and a polynomial-time approximation scheme by discretization and enumeration. Our algorithms can be generalized for computing an approximate minimum-perimeter intersecting polygon of a set of convex polygons in the plane. From the other direction, we show that computing a minimum-perimeter intersecting polygon of a set of (not necessarily convex) simple polygons is NP-hard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G.E.: An asymptotic expression for the number of solutions of a general class of Diophantine equations. Transactions of the American Mathematical Society 99, 272–277 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, G.E.: A lower bound for the volume of strictly convex bodies with many boundary lattice points. Transactions of the American Mathematical Society 106, 270–279 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Applied Mathematics 55, 197–218 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bárány, I., Pach, J.: On the number of convex lattice polygons. Combinatorics, Probability & Computing 1, 295–302 (1992)

    MATH  Google Scholar 

  5. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. Journal of Algorithms 57, 22–36 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. Journal of Algorithms 48, 135–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  8. Hassanzadeh, F., Rappaport, D.: Approximation algorithms for finding a minimum perimeter polygon intersecting a set of line segments. In: Dehne, F., Gavrilova, M.L., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 363–374. Springer, Heidelberg (2009)

    Google Scholar 

  9. van Kreveld, M., Löffler, M.: Approximating largest convex hulls for imprecise points. Journal of Discrete Algorithms 6, 583–594 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica (2008), doi:10.1007/s00453-008-9174-2

    Google Scholar 

  11. Rappaport, D.: Minimum polygon transversals of line segments. International Journal of Computational Geometry and Applications 5(3), 243–265 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Welzl, E.: The smallest rectangle enclosing a closed curve of length π (1993) (manuscript), http://www.inf.ethz.ch/personal/emo/SmallPieces.html

  13. Wenger, R.: Helly-type theorems and geometric transversals. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 73–96. CRC Press, Boca Raton (2004)

    Google Scholar 

  14. Yaglom, I.M., Boltyanski, V.G.: Convex Figures. Holt, Rinehart and Winston, New York (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, A., Jiang, M. (2010). Minimum-Perimeter Intersecting Polygons. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics