Skip to main content

Optimal Polygonal Representation of Planar Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Abstract

In this paper, we consider the problem of representing graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges with slopes 0, 1, -1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battista, G.D., Lenhart, W., Liotta, G.: Proximity drawability: A survey. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 328–339. Springer, Heidelberg (1995)

    Google Scholar 

  2. Biedl, T., Bretscher, A., Meijer, H.: Rectangle of influence drawings of graphs without filled 3-cycles. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 359–368. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Proc. Joint Eurographics/IEEE TVCG Symp. Visualization, VisSym., pp. 33–42 (2000)

    Google Scholar 

  4. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Transactions on Algorithms 4(1) (2008)

    Google Scholar 

  5. Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Inform. Process. Lett. 54, 241–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability and Computing 3, 233–246 (1994)

    MathSciNet  MATH  Google Scholar 

  8. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Procs. 20th Symposium on Theory of Computing (STOC), pp. 426–433 (1988)

    Google Scholar 

  9. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographical analysis. Systematic Zoology 18, 54–64 (1969)

    Article  Google Scholar 

  11. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM Journal of Computing 22(6), 1218–1226 (1993)

    Article  MATH  Google Scholar 

  12. He, X.: On floor-plan of plane graphs. SIAM Journal of Computing 28(6), 2150–2167 (1999)

    Article  MATH  Google Scholar 

  13. Hliněný, P.: Classes and recognition of curve contact graphs. Journal of Comb.  Theory (B) 74(1), 87–103 (1998)

    Article  MATH  Google Scholar 

  14. Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Mathematics 229(1-3), 101–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. Journal of the ACM 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80, 1502–1517 (1992)

    Article  Google Scholar 

  17. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 263–276. Springer, Heidelberg (1993)

    Google Scholar 

  18. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996) (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172, 175–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math.-Phys. Klasse 88,141–164 (1936)

    Google Scholar 

  21. Koźmiński, K., Kinnen, W.: Rectangular dualization and rectangular dissections. IEEE Transactions on Circuits and Systems 35(11), 1401–1416 (1988)

    Article  MATH  Google Scholar 

  22. Lai, Y.-T., Leinwand, S.M.: Algorithms for floorplan design via rectangular dualization. IEEE Transactions on Computer-Aided Design 7, 1278–1289 (1988)

    Article  Google Scholar 

  23. Lai, Y.-T., Leinwand, S.M.: A theory of rectangular dual graphs. Algorithmica 5, 467–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, C.-C., Lu, H.-I., Yen, H.-C.: Compact floor-planning via orderly spanning trees. Journal of Algorithms 48, 441–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.H.: The rectangle of influence drawability problem. Computational Geometry: Theory and Applications 10, 1–22 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. Journal of Algorithms 50(1), 62–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Read, R.C.: A new method for drawing a graph given the cyclic order of the edges at each vertex. Congressus Numerantium 56, 31–44 (1987)

    MathSciNet  Google Scholar 

  28. Steadman, P.: Graph-theoretic representation of architectural arrangement. In: March, L. (ed.) The Architecture of Form, pp. 94–115. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  29. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69 (1982)

    Google Scholar 

  30. Thomassen, C.: Interval representations of planar graphs. Journal of Comb.  Theory (B) 40, 9–20 (1988)

    Article  MathSciNet  Google Scholar 

  31. Yeap, G.K., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM Journal on Discrete Mathematics 8(2), 258–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G. (2010). Optimal Polygonal Representation of Planar Graphs. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics