Skip to main content

Clustering Analysis of Water Quality for Canals in Bangkok, Thailand

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6018))

Abstract

Two clustering techniques of water quality for canals in Bangkok were compared: K-means and Fuzzy c-means. The result illustrated that K-means has a better performance. As a result, K-means cluster was used to classify 24 canals of 344 records of surface water quality within Bangkok; the capital city of Thailand. The data was obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2005-2008. Water samples were collected and analyzed on 13 different parameters: temperature, pH value (pH), hydrogen sulfide (H2S), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), substance solid (SS), total kjeldahl nitrogen (TKN), ammonia nitrogen (NH3N), nitrite nitrogen (NO2N), nitrate nitrogen (NO3N), total phosphorous (T-P) and total coliform. The data were analyzed and clustered. The results of cluster analysis divided the canals into five clusters. The information from clustering could enhance the understanding of surface water usage in the area. Additionally, it can provide the useful information for better planning and watershed management of canals in Bangkok.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengraine, K., Marhaba, T.F.: Using principle component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials 100(1-3), 179–195 (2003)

    Article  Google Scholar 

  2. Guler, C., Thyne, G.D.: Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian wells-Owens Valley area, southeastern California. Journal of Hydrology 285(1-4), 177–198 (2004)

    Article  Google Scholar 

  3. MacQueen, J.B., Foster, I., Kesselman, C.: Some Methods for classification and Analysis of Multivariate Observations: Procee C.: The Grid: Blueprint for a New Computing Infrastructure. In: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297. Univ. of. Calif. Press, Berkeley (1967)

    Google Scholar 

  4. Dogan, E., Sengorur, B., Koklu, R.: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management (2008)

    Google Scholar 

  5. Areerachakul, S., Sanguansintukul, S.: Water Classification Using Neural Network: A Case Study of Canals in Bangokok. In: The 4th International Conference for Internet Technology and Secured Transactions (ICITST 2009), Thailand. IEEE Press, United Kingdom (2009)

    Google Scholar 

  6. Anazawa, K., Ohmori, H.: The hydrochemistry of surface waters in Andesitic Volcanic area, Norikura Volcano, central Japan. Chemosphere 59(5), 605–615 (2005)

    Article  Google Scholar 

  7. Astel, A., Tsakovski, S., Simeonov, V., Reisenhofer, E., Piselli, S., Barbieri, P.: Multivariate classification and modeling in surface water pollution estimation. Analytical and Bioanalytical Chemistry 390(5), 1283–1292 (2008)

    Article  Google Scholar 

  8. Binbib, H., Fang, T., Guo, D.: Quality assessment and uncertainty handling in spatial data mining. In: Proc. 12th Conference on Geoinformations, Sweden (2004)

    Google Scholar 

  9. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernández, J.M., Fernández, L.: Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34(3), 807–816 (2000)

    Article  Google Scholar 

  10. Kanungo, T., Mount, D., Netanyahu, N., Piatko, D.C., Silverman, R.: An Efficient K-means Clustering Algorithm Analysis and Implementation. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(7) (July 2002)

    Google Scholar 

  11. Laaksoharju, M., Gurban, I., Skarman, C., Skarman, E.: Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Applied Geochemistry 14(7), 861–871 (1999)

    Article  Google Scholar 

  12. Liu, C.W., Lin, K.H., Kuo, Y.M.: Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment 313(1-3), 77–89 (2003)

    Article  Google Scholar 

  13. Halkidi, M., Vazirgiannis, M.: Cluster validity assessment: finding the optimal partitioning of a dataset. In: Proc. ICDM Conference, San Jose, Californaia, USA, pp. 187–194 (1996)

    Google Scholar 

  14. Simeonov, V., Stratis, J.A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., Kouimtzis, T.: Assessment of the surface water quality in Northern Greece. Water Research 37(17), 4119–4124 (2003)

    Article  Google Scholar 

  15. Simeonova, P., Simeonov, V., Andreev, G.: Water quality study of the Struma River Basin, Bulgaria. Central European Journal of Chemistry 2, 121–136 (2003)

    Article  Google Scholar 

  16. Singh, K.P., Malik, A., Sinha, S.: Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study. Analytica Chimica Acta 538(1-2), 355–374 (2005)

    Article  Google Scholar 

  17. Vega, M., Pardo, R., Barrado, E., Deban, L.: Assessment of seasonal and polluting effects on the quality of river water byex ploratory data analysis. Water Research 32(12), 3581–3592 (1998)

    Article  Google Scholar 

  18. Bezdek, J.C.: Fuzzy partition and relations: an axiomatic basic for clustering. Fuzzy Sets and Systems 1, 111–127 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liou, S., Lo, S., Hu, C.: Application of two-stage fuzzy set theory to river quality evaluation in Taiwan. Water Research 37, 1406–1416 (2003)

    Article  Google Scholar 

  20. Ministry of Natural Resource and Environment, http://www.mnre.go.th

  21. Department of Drainage and Sewerage Bangkok Metropolitan Administration, http://dds.bangkok.go.th/wqm/thai/home.html

  22. Department of Pollution Control Bangkok, http://www.pcd.go.th

  23. Ministry of Public Health, http://eng.moph.go.th

  24. Luke, B.: K-Means Clustering, http://fconyx.ncifcrf.gov/~lukeb/kmeans.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Areerachakul, S., Sanguansintukul, S. (2010). Clustering Analysis of Water Quality for Canals in Bangkok, Thailand. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12179-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12179-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12178-4

  • Online ISBN: 978-3-642-12179-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics