Skip to main content

Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.)

  • Chapter
  • First Online:
Toxic Plant Proteins

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 18))

Abstract

The toxicity of plant proteins, later identified as ribosome-inactivating proteins (RIPs), was described more than a century ago and their enzymatic activity was established more than 30 years ago. However, their physiological role and related biological activities are still uncertain. Therefore, despite the body of literature, research on RIPs is ongoing. This review deals with new RIPs being purified, sequenced, characterized, and cloned, and an increasing number of 3D-structures that are determined at high resolution. This is the case of the five type 1 RIPs (PD-S1-3, PD-L1/2, PD-L3/4, dioicin 1, and dioicin 2) from seeds and leaves of the ombú tree (Phytolacca dioica L.), native of the grassy pampas of Argentina. The data collected so far will contribute to our understanding of important issues of RIP research: (1) identifying structural determinants responsible for new enzymatic activities such as the DNA cleaving activity; (2) glycosylation and its influence on the catalytic and biological activities; (3) cellular localization of endogenous RIPs and their physiological role(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The genus Phytolacca is suspected to contain a toxic saponin, which causes enteritis with vomiting, abdominal pain and diarrhea. The illness may be fatal (cfr. Saunders Comprehensive Veterinary Dictionary, 3rd edn. © 2007 Elsevier, Inc.). No information is reported of a likely involvement in the symptoms of ribosome-inactivating proteins. Poisoning of cattle and chickens from Phytolacca dioica L. (packalacca) or Phytolacca dodecandra l'Herit were reported (Storie et al. 1992; Mugera 1970).

  2. 2.

    Synonym: P. decandra L.

  3. 3.

    Synonyms: Phytolacca acinosa Maxim. and Phytolacca kaempferi (A. Gray).

  4. 4.

    The ombú tree was introduced in Italy from South America. The plant (also called umbú tree) grows to a height and spread of 60 ft (20 m) or more, often with multiple trunks developing from an enormous base resembling a giant pedestal. The huge base may be 3–6 ft tall (1–2 m) and 95 ft (30 m) in circumference. Ombú tree is native of the grassy pampas of Argentina, usually widely spaced and the only trees for miles. It is dioecious, and the female tree produces large quantities of white, fleshy fruits. It is a salt-resistant species, often planted near the sea.

  5. 5.

    Synonyms and common names. Synonyms (from www.hear.org/pier/species/phytolacca_dioica.htm): Phytolacca arborea Moq., Phytolacca populifolia Salisb., Pircunia dioica Moq., Sarcoca dioica Rafin. Common names (English language): belhambra, packalacca (also trade name) and phytolacca; (Spanish language) bella sombra tree, belombra, ombú and umbú (the last two also trade names).

  6. 6.

    Synonym: Phytolacca abissynica Hoffm.

  7. 7.

    Synonym: Phytolacca octandra L.

  8. 8.

    The protein sequence data of P. dioica RIPs have been deposited in the UniProtKB with accession numbers P34967 for PD-S2, P84853 for PD-L1/2, P84854 for PD-L3/4 and P85208 for dioicin 2.

References

  • Aceto S, Di Maro A, Conforto B, Siniscalco GS, Parente A, Delli Bovi P, Gaudio L (2005) Nicking activity on pBR322 DNA of ribosome-inactivating proteins from Phytolacca dioica L. leaves. Biol Chem 386:307–317

    Article  PubMed  CAS  Google Scholar 

  • Adams RLP, Knowler JT, Leader DP (1986) Degradation and modification of nucleic acids. In: The biochemistry of the nucleic acids, 10th edn. Chapman and Hall, London, p 87

    Chapter  Google Scholar 

  • Ago H, Kataoka J, Tsuge H, Habuka N, Inagaki E et al (1994) X-ray structure of a pokeweed antiviral protein, coded by a new genomic clone, at 0.23 nm resolution. A model structure provides a suitable electrostatic field for substrate binding. Eur J Biochem 225:369–374

    Article  PubMed  CAS  Google Scholar 

  • Ak P, Benham CJ (2005) Susceptibility to superhelically driven DNA duplex destabilization: a highly conserved property of yeast replication origins. PLoS Comput Biol 1:e7

    Article  PubMed  Google Scholar 

  • Amir-Aslani A, Mauffret O, Bittoun P, Sourgen F, Monnot M, Lescot E, Fennandjian S (1995) Hairpins in a DNA site for topoisomerase II studied by 1H- and 31P-NMR. Nucleic Acids Res 23:3850–3857

    Article  PubMed  CAS  Google Scholar 

  • Arias FJ, Rojo MA, Ferreras MJ, Iglesias R, Muñoz R, Rocher A, Mendez E, Barbieri L, Girbés T (1992) Isolation and partial characterization of a new ribosome-inactivating protein from Petrocoptis glaucifolia (Lag.) Boiss. Planta 186:532–540

    Article  CAS  Google Scholar 

  • Bagga S, Seth D, Batra JK (2003) The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. J Biol Chem 278:4813–4820

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Righi F, Zuccheri G, Monti G, Gorini P, Samorì B, Stirpe F (2000) Polynucleotide:adenosine glycosidase is the sole activity of ribosome-inactivating proteins on DNA. J Biochem (Tokyo) 128:883–889

    Article  CAS  Google Scholar 

  • Barbieri L, Brigotti M, Perocco P, Carnicelli D, Ciani M, Mercatali L, Stirpe F (2003) Ribosome-inactivating proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and have transforming activity for 3T3 fibroblasts. FEBS Lett 538:178–182

    Article  PubMed  CAS  Google Scholar 

  • Battelli MG, Lorenzoni E, Stirpe F, Cella R, Parisi B (1984) Differential effect of ribosome-inactivating proteins on plant ribosomes activity and plant cells growth. J Exp Bot 155:882–889

    Article  Google Scholar 

  • Battelli MG, Barbieri L, Stirpe F (1990) Toxicity of, and histological lesions caused by, ribosome-inactivating proteins, their IgG-conjugates, and their homopolymers. Acta Pathol Microbiol Immunol Scand 98:585–593

    CAS  Google Scholar 

  • Battelli MG, Montacuti V, Stirpe F (1992) High sensitivity of cultured human trophoblasts to ribosome-inactivating proteins. Exp Cell Res 201:109–112

    Article  PubMed  CAS  Google Scholar 

  • Benham CJ, Bi C (2004) The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J Comput Biol 11:519–543

    Article  PubMed  CAS  Google Scholar 

  • Boehr DD, Farley AR, Wright GD, Cox JR (2002) Analysis of the pi–pi stacking interactions between the aminoglycoside antibiotic kinase APH(3′)-IIIa and its nucleotide ligands. Chem Biol 9:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Alfieri R, Sestili P, Bonelli M, Petronini PG, Guidarelli A, Barbieri L, Stirpe F, Sperti S (2002) Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J 16:365–372

    Article  PubMed  CAS  Google Scholar 

  • Carzaniga R, Sinclair L, Fordharm-Skelton AP, Harris N, Croy RDR (1994) Cellular and subcellular distribution of saporins, type-1 ribosome-inactivating proteins, in soapwort (Saponaria officinalis L.). Planta 194:461–470

    Article  CAS  Google Scholar 

  • Ceriotti A, Duranti M, Bollini R (1998) Effects of N-glycosylation on the folding and structure of plant proteins. J Exp Bot 49:1091–1103

    CAS  Google Scholar 

  • Chambery A, Pisante M, Di Maro A, Di Zazzo E, Ruvo M, Costantini S, Colonna G, Parente A (2007) Invariant Ser211 is involved in the catalysis of PD-L4, type I RIP from Phytolacca dioica leaves. Proteins 67:209–218

    Article  PubMed  CAS  Google Scholar 

  • Chambery A, Di Maro A, Parente A (2008) Primary structure and glycan moiety characterization of PD-Ss, type 1 ribosome-inactivating proteins from Phytolacca dioica L. seeds, by precursor ion discovery on a Q-TOF mass spectrometer. Phytochemistry 69:1973–1982

    Article  PubMed  CAS  Google Scholar 

  • Dallal JA, Irvin JD (1978) Enzymatic inactivation of eukaryotic ribosomes by the pokeweed antiviral protein. FEBS Lett 89:257–259

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Lord JM, Roberts LM (1998) The deoxyribonuclease activity attributed to ribosome-inactivating proteins is due to contamination. Eur J Biochem 258:540–545

    Article  PubMed  CAS  Google Scholar 

  • Del Vecchio Blanco F, Bolognesi A, Malorni A, Sande MJ, Savino G, Parente A (1997) Complete amino-acid sequence of PD-S2, a new ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochim Biophys Acta 1338:137–144

    Article  PubMed  CAS  Google Scholar 

  • Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26:457–491

    Article  PubMed  CAS  Google Scholar 

  • Di Maro A, Del Vecchio Blanco F, Savino G, Parente A (1995) Isolation and characterization of a nicked form of the single-chain ribosome inactivating protein from seeds of Phytolacca dioica L. In: First European symposium of the protein society, vol 4, Protein Science, Davos, Switzerland, p 128 (com 495)

    Google Scholar 

  • Di Maro A, Valbonesi P, Bolognesi A, Stirpe F, De Luca P et al (1999) Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide:adenosine glycosidase activity, from leaves of Phytolacca dioica L. Planta 208:125–131

    Article  PubMed  Google Scholar 

  • Di Maro A, Chambery A, Daniele A, Casoria P, Parente A (2007) Isolation and characterization of heterotepalins, type 1 ribosome-inactivating proteins from Phytolacca heterotepala leaves. Phytochemistry 68:767–776

    Article  PubMed  Google Scholar 

  • Di Maro A, Di Giovannantonio L, Delli Bovi P, De Andrés SF, Parente A (2008) N-terminal amino acid sequences of intact and cleaved forms of mung bean nuclease. Planta Med 74:588–590

    Article  PubMed  Google Scholar 

  • Di Maro A, Chambery A, Carafa V, Costantini S, Colonna G et al (2009) Structural characterization and comparative modeling of PD-Ls 1–3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 91:352–363

    Article  PubMed  Google Scholar 

  • Duggar BM, Armstrong JK (1925) The effect of treating the virus of TMV with juices of various plants. Ann Missouri Bot Garden 12:359–366

    Article  Google Scholar 

  • Elbein AD (1991) The role of N-linked oligosaccharides in glycoprotein function. Trends Biotechnol 9:346–352

    Article  PubMed  Google Scholar 

  • Esnouf RM (1999) Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr 55:938–940

    Article  PubMed  CAS  Google Scholar 

  • Faoro F, Conforto B, Di Maro A, Parente A, Iriti M (2009) Activation of plant defence response contributes to the antiviral activity of diocin 2 from Phytolacca dioica. IOBC/wprs Bull 44:53–57

    Google Scholar 

  • Fermani S, Falini G, Ripamonti A, Polito L, Stirpe F et al (2005) The 1.4 angstroms structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome inactivating proteins. J Struct Biol 149:204–212

    Article  PubMed  CAS  Google Scholar 

  • Girbés T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem 4:461–476

    Article  PubMed  Google Scholar 

  • Guo Q, Zhou W, Too HM, Li J, Liu Y et al (2003) Substrate binding and catalysis in trichosanthin occur in different sites as revealed by the complex structures of several E85 mutants. Protein Eng 16:391–396

    Article  PubMed  CAS  Google Scholar 

  • Hao Q, Peumans WJ, Van Damme EJ (2001) Type-1 ribosome-inactivating protein from iris (Iris hollandica var. Professor Blaauw) binds specific genomic DNA fragments. Biochem J 357:875–880

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Chen M, Chen L, Meehan EJ, Xie J et al (2007) X-ray sequence and crystal structure of luffaculin 1, a novel type 1 ribosome-inactivating protein. BMC Struct Biol 7:29

    Article  PubMed  Google Scholar 

  • Houston LL, Ramakrishnan S, Hermodson MA (1983) Seasonal variations in different forms of pokeweed antiviral protein, a potent inactivator of ribosomes. J Biol Chem 258:9601–9604

    PubMed  CAS  Google Scholar 

  • Huang Y, Kowalski D (2003) Web-Thermodyn: sequence analysis software for profiling DNA helical stability. Nucleic Acids Res 31:3819–3821

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Liu S, Tang Y, Jin S, Wang Y (1995) Studies on crystal structures, active-centre geometry and depurinating mechanism of two ribosome-inactivating proteins. Biochem J 309:285–298

    PubMed  CAS  Google Scholar 

  • Iglesias R, Pérez Y, Citores L, Ferreras JM, Méndez E, Girbés T (2008) Elicitor-dependent expression of the ribosome-inactivating protein beetin is developmentally regulated. J Exp Bot 59:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD (1975) Purification and partial characterization of the antiviral protein from Phytolacca americana which inhibits eukaryotic protein synthesis. Arch Biochem Biophys 169:522–528

    Article  PubMed  CAS  Google Scholar 

  • Irvin JD, Kelly T, Robertus JD (1980) Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch Biochem Biophys 200:418–425

    Article  PubMed  CAS  Google Scholar 

  • Kassanis B, Kleczkowska I (1948) The isolation and some properties of a virus-inhibiting protein from Phytolacca esculenta. J Gen Microbiol 2:143–153

    CAS  Google Scholar 

  • Kawade K, Masuda K (2009) Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. Plant Physiol Biochem 47:327–334

    Article  PubMed  CAS  Google Scholar 

  • Kowalski D, Kroeker WD, Laskowski MSR (1976) Mung bean nuclease I. Physical, chemical, and catalytical properties. Biochemistry 15:4457–4463

    Article  PubMed  CAS  Google Scholar 

  • Kowalski D, Natale DA, Eddy MG (1988) Stable DNA unwinding, not ‘breathing’, accounts for single-strand-specific nuclease hypersensitivity of specific A + T-rich sequences. Proc Natl Acad Sci USA 85:9464–9468

    Article  PubMed  CAS  Google Scholar 

  • Kurinov IV, Uckun FM (2003) High resolution X-ray structure of potent anti-HIV pokeweed antiviral protein-III. Biochem Pharmacol 65:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Kurinov IV, Myers DE, Irvin JD, Uckun FM (1999) X-ray crystallographic analysis of the structural basis for the interactions of pokeweed antiviral protein with its active site inhibitor and ribosomal RNA substrate analogs. Protein Sci 8:1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Liu WY, Wang TP (1994) Cleavage of supercoiled double-stranded DNA by several ribosome-inactivating proteins in vitro. FEBS Lett 345:143–146

    Article  PubMed  CAS  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27

    Article  PubMed  CAS  Google Scholar 

  • Mugera GM (1970) Phytolacca dodecandra l'Herit toxicity in livestock in Kenya. Bull Epizoot Dis Afr 18:41–43

    PubMed  CAS  Google Scholar 

  • Nicolas E, Gooyer ID, Taraschi TF (1997) An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA. Biochem J 327:413–417

    PubMed  CAS  Google Scholar 

  • O’Connor SE, Imperiali B (1996) Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol 3:803–812

    Article  PubMed  Google Scholar 

  • Obrig TG, Irvin JD, Hardesty B (1973) The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II. Arch Biochem Biophys 155:278–289

    Article  PubMed  CAS  Google Scholar 

  • Parente A, De Luca P, Bolognesi A, Barbieri L, Battelli MG, Abbondanza A, Sande JWM, Gigliano SG, Tazzari PL, Stirpe F (1993) Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioica L. Biochim Biophys Acta 1216:43–49

    Article  PubMed  CAS  Google Scholar 

  • Parente A, Conforto P, Di Maro A, Chambery A, De Luca P, Bolognesi A, Iriti M, Faoro F (2008) Type 1 ribosome-inactivating proteins from Phytolacca dioica L. leaves: differential seasonal and age expression, and cellular localization. Planta 228:963–975

    Article  PubMed  CAS  Google Scholar 

  • Park S-W, Lawrence CB, Linden JC, Vivanco JM (2002) Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol 130:164–178

    Article  PubMed  CAS  Google Scholar 

  • Park S-W, Vepachedu R, Owens RA, Vivanco JM (2004a) The N-glycosidase activity of the ribosome-inactivating protein ME1 targets single-stranded regions of nucleic acids independent of sequence or structural motifs. J Biol Chem 279:34165–34174

    Article  PubMed  CAS  Google Scholar 

  • Park S-W, Vepachedu R, Sharma N, Vivanco JM (2004b) Ribosome inactivating proteins in plant biology. Planta 219:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Rajamohan F, Venkatachalam TK, Irvin JD, Uckun FM (1999) Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem Biophys Res Commun 260:453–458

    Article  PubMed  CAS  Google Scholar 

  • Ready MP, Adams RP, Robertus JD (1984) Dodecandrin, a new ribosome-inhibiting protein from Phytolacca dodecandra. Biochim Biophys Acta 791:314–319

    Article  PubMed  CAS  Google Scholar 

  • Ready MP, Brown DT, Robertus JD (1986) Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci USA 83:5053–5056

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Wang Y, Dong Y, Stuart DI (1994) The N-glycosidase mechanism of ribosome-inactivating proteins implied by crystal structures of alpha-momorcharin. Structure 2:7–16

    Article  PubMed  CAS  Google Scholar 

  • Roncuzzi L, Gasperi-Campani A (1996) DNA-nuclease activity of the single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. FEBS Lett 392:16–20

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Chambery A, Di Maro A, Pisante M, Parente A et al (2007a) Crystallization and preliminary X-ray diffraction analysis of PD-L4, a ribosome inactivating protein from Phytolacca dioica L. leaves. Protein Pept Lett 14:97–100

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Chambery A, Di Maro A, Mastroianni A, Parente A et al (2007b) Crystallization and preliminary X-ray diffraction analysis of PD-L1, a highly glycosylated ribosome inactivating protein with DNase activity. Protein Pept Lett 14:407–409

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Chambery A, Di Maro A, Parente A, Berisio R (2008) Atomic resolution (1.1 A) structure of the ribosome-inactivating protein PD-L4 from Phytolacca dioica L. leaves. Proteins 71:8–15

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Di Maro A, Severino V, Chambery A, Berisio R (2009) Crystal structure of PD-L1, a ribosome inactivating protein from Phytolacca dioica L. leaves with the property to induce DNA cleavage. Biopolymers 91:1135–1142

    PubMed  Google Scholar 

  • Savino C, Federici L, Ippoliti R, Lendaro E, Tsernoglou D (2000) The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett 470:239–243

    Article  PubMed  CAS  Google Scholar 

  • Sawasaki T, Nishihara M, Endo Y (2008) RIP and RALyase cleave the sarcin/ricin domain, a critical domain for ribosome function, during senescence of wheat coleoptiles. Biochim Biophys Res Commun 370:561–565

    Article  CAS  Google Scholar 

  • Schmidt A, Lamzin VS (2002) Veni, vidi, vici – atomic resolution unravelling the mysteries of protein function. Curr Opin Struct Biol 12:698–703

    Article  PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (1993) Carbohydrates in cell recognition. Sci Am 268:82–89

    Article  PubMed  CAS  Google Scholar 

  • Sheflin LG, Kowalski D (1985) Altered DNA conformation detected by mung bean nuclease occur in promoter and terminator regions of supercoiled pBR322 DNA. Nucleic Acids Res 13:6137–6154

    Article  PubMed  CAS  Google Scholar 

  • Song SK, Choi Y, Moon YH, Kim SG, Choi YD, Lee JS (2000) Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol Biol 43:439–450

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  • Storie GJ, McKenzie RA, Fraser IR (1992) Suspected packalacca (Phytolacca dioica) poisoning of cattle and chickens. Aust Vet J 69:21–22

    Article  PubMed  CAS  Google Scholar 

  • Strocchi P, Barbieri L, Stirpe F (1992) Immunological properties of ribosome-inactivating proteins and a saporin immunotoxin. J Immunol Methods 155:57–63

    Article  PubMed  CAS  Google Scholar 

  • Tazzari PL, Bolognesi A, de Totero D, Falini B, Lemoli RM, Soria MR, Pileri S, Gobbi M, Stein H, Flenghi L et al (1992) Ber-H2 (anti-CD30)-saporin immunotoxin: a new tool for the treatment of Hodgkin's disease and CD30+ lymphoma: in vitro evaluation. Br J Haematol 81:203–211

    Article  PubMed  CAS  Google Scholar 

  • Thomsen S, Hansen HS, Nyman U (1991) Ribosome-inhibiting proteins from in vitro cultures of Phytolacca dodecandra. Planta Med 57:232–236

    Article  PubMed  CAS  Google Scholar 

  • Touloupakis E, Gessmann R, Kavelaki K, Christofakis E, Petratos K et al (2006) Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from Charybdis maritima agg. FEBS J 273:2684–2692

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  PubMed  CAS  Google Scholar 

  • Vesnaver G, Chang CN, Eisenberg M, Grollman AP, Breslauer KJ (1989) Influence of abasic and anucleosidic sites on the stability, conformation, and melting behavior of a DNA duplex: correlations of thermodynamic and structural data. Proc Natl Acad Sci USA 86:3614–3618

    Article  PubMed  CAS  Google Scholar 

  • Vrielink A, Sampson N (2003) Sub-angstrom resolution enzyme X-ray structures: is seeing believing? Curr Opin Struct Biol 13:709–715

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Tumer NE (1999a) Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA. Nucleic Acids Res 27:1900–1905

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, Neamati N, Jacob J, Palmer I, Stahl SJ, Kaufman JD, Huang PL, Huang PL, Winslow HE, Pommier Y et al (1999b) Solution structure of anti-HIV-1 and antitumor protein MAP30: structural insights into multiple functions. Cell 99:433–442

    Article  PubMed  CAS  Google Scholar 

  • Wheat D (1977) Successive cambia in the stem of Phytolacca dioica. Am J Bot 64:1209–1217

    Article  Google Scholar 

  • Wyss DF, Wagner G (1996) The structural role of sugars in glycoproteins. Curr Opin Biotechnol 7:409–416

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari S, Yokota S, Sawamoto H, Koresawa S, Tamura M, Endo Y (1996) Purification, characterization and subcellular localization of a type-1 ribosome-inactivating protein from the sarcocarp of Cucurbita pepo. Eur J Biochem 242:585–591

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari S, Koresawa S, Yokota S, Sawamoto H, Tamura M, Endo Y (1997) Gypsophilin, a new type 1 ribosome-inactivating protein from Gypsophila elegans: purification, enzymatic characterization, and subcellular localization. Biosci Biotechnol Biochem 61:324–331

    Article  PubMed  CAS  Google Scholar 

  • Zacchia E, Tamburino R, Di Maro A, Parente A (2009) Isolamento e caratterizzazione di forme tagliate di una proteina inattivante i ribosomi da semi di Phytolacca dioica L. Giornate Scientifiche della SUN, VIS-1. http://www.gsa.unina2.it/index.php?option=com_wrapper&Itemid=42

  • Zeng ZH, He XL, Li HM, Hu Z, Wang DC (2003) Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 1.8 Å resolution. J Struct Biol 141:171–178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Parente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parente, A., Berisio, R., Chambery, A., Di Maro, A. (2010). Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). In: Lord, J., Hartley, M. (eds) Toxic Plant Proteins. Plant Cell Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12176-0_5

Download citation

Publish with us

Policies and ethics