Skip to main content

Type I Ribosome-Inactivating Proteins from Saponaria officinalis

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 18))

Abstract

Saporins are ribosome-inactivating proteins (RIPs) extracted from different tissues of the soapwort plant (Saponaria officinalis L.). While the biosynthesis of these proteins and their roles in planta have received little attention, saporins have been extensively used for the production of targeted toxins for therapeutical and research applications. The biochemical features of one group of closely related saporin isoforms, collectively named SO6, have been characterized in considerable detail. In this chapter, we summarize available information on the saporin family of proteins, including their catalytic activity, 3D-structure, and biosynthetic and intoxication pathway(s), emphasizing the differences between the different family members and the characteristics that distinguish saporin from the catalytic subunit of the prototype Type II RIP ricin. The use of heterologous systems for the production of saporin and saporin-based chimeric toxins is also described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arias FJ, Rojo MA, Ferreras JM, Iglesias R, Muñoz R, Soriano F, Méndez E, Barbieri L, Girbés T (1994) Isolation and characterisation of two new N-glycosidase type I ribosome inactivating proteins, unrelated in sequence, from Petrocoptis species. Planta 194:487–491

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Hosur MV, Batra JK (2003a) Cytotoxicity of ribosome-inactivating protein saporin is not mediated through α2-macroglobulin receptor. FEBS Lett 541:16–20

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Seth D, Batra JK (2003b) The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. J Biol Chem 278:4813–4820

    Article  PubMed  CAS  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosomes. Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  • Baluna R, Vitetta ES (1997) Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 37:117–132

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Ferreras JM, Barracco A, Ricci P, Stirpe F (1992) Some ribosome-inactivating proteins depurinate ribosomal RNA at multiple sites. Biochem J 286:1–4

    PubMed  CAS  Google Scholar 

  • Barbieri L, Gorini P, Valbonesi P, Castiglioni P, Stirpe F (1994) Unexpected activity of saporins. Nature 372:624

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Gorini P, Pession A, Stirpe F (1996) Polynucleotide:adenosine glycosidase activity of saporin L1: effect on DNA, RNA and poly(A). Biochem J 319:507–513

    PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A, Stirpe F (1997) Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res 25:518–522

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Valbonesi P, Righi F, Zucceri G, Monti F, Gorini P, Samori B, Stirpe F (2000) Polynucleotide:adenosine glycosidase is the sole activity of ribosome-inactivating proteins on DNA. J Biochem 128:883–889

    Article  PubMed  CAS  Google Scholar 

  • Barra D, Maras B, Schininà ME, Angelaccio S, Bossa F (1991) Assessment of sequence features in internal regions of proteins. Biotechnol Appl Biochem 13:48–53

    PubMed  CAS  Google Scholar 

  • Barthelemy I, Martineau D, Ong M, Matsunami R, Ling N, Benatti L, Cavallaro U, Soria M, Lappi DA (1993) The expression of saporin, a ribosome inactivating protein from the plant Saponaria officinalis, in Escherichia coli. J Biol Chem 268:6541–6548

    PubMed  CAS  Google Scholar 

  • Benatti L, Saccardo MB, Dani M, Nitti G, Sassano M, Lorenzetti R, Lappi DA, Soria M (1989) Nucleotide sequence of cDNA coding for saporin 6, a type 1 ribosome-inactivating protein. Eur J Biochem 183:465–470

    Article  PubMed  CAS  Google Scholar 

  • Benatti L, Nitti G, Solinas M, Valsasina B, Vitale A, Ceriotti A, Soria MR (1991) A saporin 6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett 29:285–288

    Article  Google Scholar 

  • Bolognesi A, Barbieri L, Abbondanza A, Falasca AI, Carnicelli D, Battelli MG, Stirpe F (1990) Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. Biochim Biophys Acta 1087:293–302

    Article  PubMed  CAS  Google Scholar 

  • Bonini F, Traini R, Comper F, Fracasso G, Tomazzoli R, Della Serra M, Colombatti M (2006) N-terminal deletion affects catalytic activity of saporin toxin. J Cell Biochem 98:1130–1139

    Article  PubMed  CAS  Google Scholar 

  • Brigotti M, Rizzi S, Carnicelli D, Montanaro L, Sperti S (2000) A survey of adenine and 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) as inhibitors of ribosome-inactivating proteins (RIPs). Life Sci 68:331–336

    Article  PubMed  CAS  Google Scholar 

  • Butterworth AG, Lord JM (1983) Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. Eur J Biochem 137:57–65

    Article  PubMed  CAS  Google Scholar 

  • Carzaniga R, Sinclair L, Fordham-Skelton AP, Harris N, Croy RRD (1994) Cellular and subcellular distribution of saporins, type-1 ribosome-inactivating proteins, in soapwort (Saponaria officinalis L.). Planta 194:461–470

    Article  CAS  Google Scholar 

  • Cavallaro U, Nykjaer A, Nielsen M, Soria MR (1995) α2-macroglobulin receptor mediates binding and cytotoxicity of plant ribosome-inactivating proteins. Eur J Biochem 232:165–171

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Lord JM, Hartley MR, Roberts LM (1994) Pokeweed antiviral protein (PAP) mutations which permit E. coli growth do not eliminate catalytic activity towards prokaryotic ribosomes. Nucleic Acids Res 22:1536–1540

    Article  PubMed  CAS  Google Scholar 

  • Chan WL, Shaw PC, Tam SC, Jacobsen C, Gliemann J, Nielsen MS (2000) Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem Biophys Res Commun 270:453–457

    Article  PubMed  CAS  Google Scholar 

  • Chan DS, Chu LO, Lee KM, Too PH, Ma KW, Sze KH, Zhu G, Shaw PC, Wong KB (2007) Interaction between trichosanthin, a ribosome-inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analysis. Nucleic Acids Res 35:1660–1672

    Article  PubMed  CAS  Google Scholar 

  • Coleman WH, Roberts WK (1982) Inhibitors of animal cell-free protein synthesis from grains. Biochim Biophys Acta 696:239–244

    Article  PubMed  CAS  Google Scholar 

  • Conese M, Cavallaro U, Sidenius N, Olson D, Soria MR, Blasi F (1995) PMA-induced down-regulation of the receptor for α2-macroglobulin in human U937 cells. FEBS Lett 358:73–78

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Lord JM, Roberts LM (1998) The deoxyribonuclease activity attributed to ribosome inactivating proteins is due to contamination. Eur J Biochem 258:540–545

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Pinheiro TJT, Roberts LM, Lord JM (2002) Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  PubMed  CAS  Google Scholar 

  • De Angelis F, Di Tullio A, Spanò L, Tucci A (2001) Mass spectrometric study of different isoforms of the plant toxin saporin. J Mass Spectrom 36:1237–1239

    Article  PubMed  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Desvoyes B, Poyet JL, Schlick JL, Adami P, Jouvenot M, Dulieu P (1997) Identification of a biological inactive complex form of pokeweed antiviral protein. FEBS Lett 410:303–308

    Article  PubMed  CAS  Google Scholar 

  • Di Cola A, Di Domenico C, Poma A, Spanò L (1997) Saporin production from in vitro cultures of the soapwort Saponaria officinalis L. Plant Cell Rep 17:55–59

    Article  Google Scholar 

  • Di Cola A, Poma A, Spanò L (1999) Culture senescence and abscisic acid induce saporin production in cultured roots of Saponaria officinalis. New Phytol 141:381–386

    Article  Google Scholar 

  • Di Maro A, Ferranti P, Mastronicola M, Polito L, Bolognesi A, Stirpe F, Malorni A, Parente A (2001) Reliable sequence determination of ribosome inactivating proteins by combining electrospray mass spectrometry and Edman degradation. J Mass Spectrom 36:38–46

    Article  PubMed  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A chain. Mechanism of action of the toxin ricin on eukaryotic ribosomes. J Biol Chem 262:8128–8130

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A chain. The characteristics of the enzymatic activity of ricin A chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Lambert JM (1988) The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes. The RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun 150:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Fabbrini MS, Rappocciolo E, Carpani D, Solinas M, Valsasina B, Breme U, Cavallaro U, Nykjaer A, Rovida E, Legname G, Soria MR (1997a) Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochem J 322:719–727

    PubMed  CAS  Google Scholar 

  • Fabbrini MS, Carpani D, Bello-Rivero I, Soria MR (1997b) The amino-terminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: internalization is toxin-mediated. FASEB J 11:1169–1176

    PubMed  CAS  Google Scholar 

  • Fabbrini MS, Carpani D, Soria MR, Ceriotti A (2000) Cytosolic immunization allows the expression of preATF-saporin chimeric toxin in eukaryotic cells. FASEB J 14:391–398

    PubMed  CAS  Google Scholar 

  • Fabbrini MS, Flavell DJ, Ippoliti R (2003) In: Ascenzi P, Polticelli F, Visca P (eds) Bacterial plant and animal toxins. Research Signpost, Kerala, pp 69–99

    Google Scholar 

  • Fermani S, Falini G, Ripamonti A, Polito L, Stirpe F, Bolognesi A (2005) The 1.4 Å structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome-inactivating proteins. J Struct Biol 149:204–212

    Article  PubMed  CAS  Google Scholar 

  • Fermani S, Tosi G, Farini V, Polito L, Falini G, Ripamonti A, Barbieri L, Chambery A, Bolognesi A (2009) Structure/function studies on two type 1 ribosome-inactivating proteins: bouganin and lychnin. J Struct Biol 168:278–287

    Article  PubMed  CAS  Google Scholar 

  • Ferreras JM, Barbieri L, Girbés T, Batelli MG, Rojo AM, Arias FJ, Rocher MA, Soriano F, Méndez E, Stirpe F (1993) Distribution and properties of the major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). Biochem Biophys Acta 1216:31–42

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Fryling CM, Zdanovsky A, Saelinger CB, Kounnas M, Winkles JA, Strickland D, Leppla J (1995) Pseudomonas exotoxin/mediated selection yields cells with altered expression of low-density lipoprotein receptor-related protein. J Cell Biol 129:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Fordham-Skelton AP, Yarwood A, Croy RRD (1990) Synthesis of saporin gene probes from partial protein sequence data: use of inosine oligonucleotides, genomic DNA and the polymerase chain reaction. Mol Gen Genet 221:134–138

    Article  PubMed  CAS  Google Scholar 

  • Fordham-Skelton AP, Taylor PN, Hartley MR, Croy RRD (1991) Characterisation of saporin genes: in vitro expression and ribosome inactivation. Mol Gen Genet 229:460–466

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Welsh P, Richardson J, Robertus JD (1990) Role of arginine 180 and glutamic acid 177 of ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol 10:6257–6263

    PubMed  CAS  Google Scholar 

  • Fuchs H, Bachran C, Li T, Heisler I, Dürkop H, Sutherland M (2007) A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. J Control Release 117:342–350

    Article  PubMed  CAS  Google Scholar 

  • Fuchs H, Bachran D, Panjideh H, Schellmann N, Weng A, Melzig MF, Sutherland M, Bachran C (2009) Saponins as tools for improved targeted tumor therapies. Curr Drug Targets 10:140–151

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Barbieri L, Stirpe F, Croy RRD (1989) Effects of ribosome inactivating proteins on insect development: differences between Lepidoptera and Coleoptera. Entomol Exp Appl 54:43–51

    Article  Google Scholar 

  • Geden S, Gardner R, Fabbrini MS, Ohashi M, Phanstiel IO, Teter K (2007) Lipopolyamine treatment increases the efficacy of intoxication with saporin and an anticancer saporin conjugate. FEBS J 274:4825–4836

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Batra JK (2006) The differential catalytic activity of ribosome-inactivating proteins saporin 5 and 6 is due to a single substitution at position 162. Biochem J 400:99–104

    Article  PubMed  CAS  Google Scholar 

  • Giansanti F, Di Leandro L, Koutris I, Pitari G, Fabbrini MS, Lombardi A, Flavell DJ, Flavell SU, Gianni S, Ippoliti R (2010) Engineering a switchable toxin: the potential use of PDZ domains in the expression, targeting and activation of modified saporin variants. Protein Eng Des Sel 23:61–68

    Article  PubMed  CAS  Google Scholar 

  • Girbés T, Barbieri L, Ferreras M, Arias FJ, Rojo MA, Iglesias R, Alegre C, Escarmis C, Stirpe F (1993) Effects of ribosome-inactivating proteins on Escherichia coli and Agrobacterium tumefaciens translation systems. J Bacteriol 175:6721–6724

    PubMed  Google Scholar 

  • Habuka N, Murakami Y, Noma M, Kudo T, Horikoshi K (1989) Amino acid sequence of Mirabilis antiviral protein, total synthesis of its gene and expression in Escherichia coli. J Biol Chem 264:6629–6637

    PubMed  CAS  Google Scholar 

  • Hartley MR, Legname G, Osborn R, Chen Z, Lord JM (1991) Single-chain ribosome-inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett 290:65–68

    Article  PubMed  CAS  Google Scholar 

  • Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H (2003) A cleavable adapter to reduce nonspecific cytotoxicity of recombinant immunotoxins. Int J Cancer 103:277–282

    Article  PubMed  CAS  Google Scholar 

  • Hesselberth JR, Miller D, Robertus JD, Ellington AD (2000) In vitro selection of RNA molecules that inhibit the activity of ricin A chain. J Biol Chem 275:4937–4942

    Article  PubMed  CAS  Google Scholar 

  • Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1997) An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem 246:133–141

    Article  PubMed  CAS  Google Scholar 

  • Hosur MV, Nair B, Satyamurthy P, Misquith S, Surolia A, Kannan KK (1995) X-ray structure of gelonin at 1.8 Å resolution. J Mol Biol 250:368–380

    Article  PubMed  CAS  Google Scholar 

  • Hudak KA, Dinman JD, Tumer NE (1999) Pokeweed antiviral protein accesses ribosomes by binding to L3. J Biol Chem 274:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Husain J, Tickle IJ, Wood SP (1994) Crystal structure of momordin, a type I ribosome inactivating protein from the seeds of Momordica charantia. FEBS Lett 342:154–158

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Arias FJ, Rojo MA, Escarmis C, Ferreras JM, Girbés T (1993) Molecular action of the type 1 ribosome-inactivating protein saporin 5 on Vicia sativa ribosomes. FEBS Lett 325:291–294

    Article  PubMed  CAS  Google Scholar 

  • Ippoliti R, Lendaro E, Bellelli A, Brunori M (1992) A ribosomal protein is specifically recognized by saporin, a plant toxin which inhibits protein synthesis. FEBS Lett 298:145–148

    Article  PubMed  CAS  Google Scholar 

  • Ippoliti R, Lendaro E, Benedetti PA, Torrisi MR, Belleudi F, Carpani D, Soria MR, Fabbrini MS (2000) Endocytosis of a chimera between human pro-urokinase and the plant toxin saporin: an unusual internalization mechanism. FASEB J 14:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Kataoka J, Habuka N, Miyano M, Masuta C, Koiwai A (1992) Adenine depurination and inactivation of plant ribosomes by an antiviral protein of Mirabilis jalapa (MAP). Plant Mol Biol 20:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Mlsna D, Monzingo AF, Ready MP, Frankel A, Robertus JD (1992) Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry 31:3294–3296

    Article  PubMed  CAS  Google Scholar 

  • Korennykh AV, Correll CC, Piccirilli AJ (2007) Evidence for the importance of electrostatics in the function of two distinct families of ribosome inactivating toxins. RNA 13:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Dattagupta S, Kannan KK, Hosur MV (1999) Purification, crystallisation and preliminary X-ray diffraction study of the ribosome inactivating protein saporin. Biochim Biophys Acta 1429:506–511

    Article  PubMed  CAS  Google Scholar 

  • Lappi DA, Esch FS, Barbieri L, Stirpe F, Soria MR (1985) Characterisation of Saponaria officinalis seed ribosome-inactivating protein: immunoreactivity and sequence homologies. Biochem Biophys Res Commun 129:934–942

    Article  PubMed  CAS  Google Scholar 

  • Lappi DA, Ying W, Barthelemy I, Martineau D, Prieto I, Benatti L, Soria MR, Baird A (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J Biol Chem 269:12552–12558

    PubMed  CAS  Google Scholar 

  • Legname G, Fossati G, Monzini N, Gromo G, Marcucci F, Mascagni P, Modena D (1995) Heterologous expression, purification, activity and conformational studies of different forms of dianthin 30. Biomed Pept Proteins Nucleic Acids 1:61–68

    PubMed  CAS  Google Scholar 

  • Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK (2008) LDL Receptor-Related Protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 88:887–918

    Article  PubMed  CAS  Google Scholar 

  • Lombardi A, Bursomanno S, Lopardo T, Traini R, Colombatti M, Ippoliti R, Flavell DJ, Flavell SU, Ceriotti A, Fabbrini MS (2010) Pichia pastoris as a host for secretion of toxic saporin chimeras. FASEB J 24:253–265

    Article  PubMed  CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208

    PubMed  CAS  Google Scholar 

  • Lord JM, Deeks ED, Marsden CJ, Moore KAH, Pateman C, Smith DC, Spooner RA, Watson P, Roberts LM (2003) Retrograde transport of toxins across the endoplasmic reticulum membrane. Biochem Soc Trans 31:1260–1262

    Article  PubMed  CAS  Google Scholar 

  • Maras B, Ippoliti R, De Luca E, Lendaro E, Bellelli A, Barra D, Bossa F, Brunori M (1990) The amino acid sequence of a ribosome-inactivating protein from Saponaria officinalis seeds. Biochem Int 21:831–838

    PubMed  CAS  Google Scholar 

  • Marsden CJ, Fülöp V, Day PJ, Lord JM (2004) The effect of mutations surrounding and within the active site on the catalytic activity of ricin A chain. Eur J Biochem 271:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer PU, Cook JP, Wahlman J, Pinheiro TJT, Moore KAH, Lord JM, Johnson AE, Roberts LM (2009) Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J Biol Chem 284:10232–10242

    Article  PubMed  CAS  Google Scholar 

  • McCluskey AJ, Poon GMK, Bolewska-Pedyczak E, Srikumar T, Jeram SM, Raught B, Gariepy J (2008) The catalytic subunit of Shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain. J Mol Biol 378:375–386

    Article  PubMed  CAS  Google Scholar 

  • Monzingo AF, Robertus JD (1992) X-ray analysis of substrate analogs in the ricin A chain active site. J Mol Biol 227:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Monzingo AF, Collins EJ, Ernst SR, Irwin JD, Robertus JD (1993) The 2.5 Å structure of pokeweed antiviral protein. J Mol Biol 233:705–715

    Article  PubMed  CAS  Google Scholar 

  • Morris KN, Wool IG (1992) Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Proc Natl Acad Sci USA 89:4869–4873

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Hao Q, Van Damme EJM (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Pittaluga E, Poma A, Tucci A, Spanò L (2005) Expression and characterisation in E. coli of mutant forms of saporin. J Biotechnol 117:263–266

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal V, Kreitman JK (2000) Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the α2-macroglobulin receptor. J Biol Chem 275:7566–7573

    Article  PubMed  CAS  Google Scholar 

  • Rajamohan F, Pugmire MJ, Kurinov IV, Uckun FM (2000) Modeling and alanine scanning mutagenesis studies of recombinant pokeweed antiviral protein. J Biol Chem 275:3382–3390

    Article  PubMed  CAS  Google Scholar 

  • Ready MP, Brown DT, Robertus JD (1986) Extracellular localization of pokeweed antiviral protein. Proc Natl Acad Sci USA 83:5053–5056

    Article  PubMed  CAS  Google Scholar 

  • Reisbig RR, Bruland Ø (1983) Dianthin 30 and 32 from Dianthus caryophyllus: two inhibitors of plant protein synthesis and their tissue distribution. Arch Biochem Biophys 224:700–706

    Article  PubMed  CAS  Google Scholar 

  • Roncuzzi L, Gasperi-Campani A (1996) DNA nuclease activity of the single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. FEBS Lett 392:16–20

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, van Deurs B (2000) Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J 19:5943–5950

    Article  PubMed  CAS  Google Scholar 

  • Santanché S, Bellelli A, Brunori M (1997) The unusual stability of saporin, a candidate for the synthesis of immunotoxins. Biochem Biophys Res Commun 234:129–132

    Article  PubMed  Google Scholar 

  • Savino C, Federici L, Brancaccio A, Ippoliti R, Lendaro E, Tsernoglou D (1998) Crystallization and preliminary X-ray study of saporin, a ribosome-inactivating protein from Saponaria officinalis. Acta Crystallogr D Biol Crystallogr 54:636–638

    Article  PubMed  CAS  Google Scholar 

  • Savino C, Federici L, Ippoliti R, Lendaro E, Tsernoglou D (2000) The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett 470:239–243

    Article  PubMed  CAS  Google Scholar 

  • Shaw PC, Mulot S, Ma SK, Xu QF, Yao HB, Wu S, Lu XH, Dong YC (1997) Structure/function relationship study of Tyr 14 and Arg 22 in trichosanthin, a ribosome-inactivating protein. Eur J Biochem 245:423–427

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Lord JM (1996) Free ricin A chain reaches an early compartment of the secretory pathway before it enters the cytosol. Exp Cell Res 229:447–451

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KAH, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Hart PJ, Cook JP, Pietroni P, Rogon C, Höhfeld J, Roberts LM, Lord JM (2008) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci USA 105:17408–17413

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Williams DG, Onyon LJ, Legg LF (1981) Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). Biochem J 195:399–405

    PubMed  CAS  Google Scholar 

  • Stirpe F, Gasperi-Campani A, Barbieri L, Falasco A, Abbondanza A, Stevens WA (1983) Ribosome-inactivating proteins from seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus) and from the latex of Hura crepitians L. (sandbox tree). Biochem J 216:617–625

    PubMed  CAS  Google Scholar 

  • Sturm MB, Tyler PC, Evans GB, Schramm VL (2009) Transition state analogues rescue ribosomes from saporin L1 ribosome inactivating protein. Biochemistry 48(41):9941–9948

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Tchorzewski M (2002) The acidic ribosomal P proteins. Int J Biochem Cell Biol 34:911–915

    Article  PubMed  CAS  Google Scholar 

  • Teter K, Holmes RK (2002) Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 70:6172–6179

    Article  PubMed  CAS  Google Scholar 

  • Tregear BE, Roberts LM (1992) The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol Biol 18:515–525

    Article  PubMed  CAS  Google Scholar 

  • Tully RE, Beevers H (1976) Protein bodies of castor bean endosperm: isolation, fractionation, and the characterization of protein components. Plant Physiol 58:710–716

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Kominami R (1992) Direct evidence for interaction of the conserved GTPase domain within 28 S rRNA with mammalian ribosomal acidic phosphoproteins and L12. J Biol Chem 267:19179–19185

    PubMed  CAS  Google Scholar 

  • Vago R, Marsden CJ, Lord JM, Ippoliti R, Flavell DJ, Flavell SU, Ceriotti A, Fabbrini MS (2005) Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. FEBS J 272:4983–4995

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Peumans WJ, Desmyter S, Proost P, Ciani M, Van Damme EJM (2004) The type 1 and type 2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta 220:211–221

    Article  PubMed  CAS  Google Scholar 

  • Vater CA, Bartle LM, Leszyk JD, Lambert JM, Goldmacher VS (1995) Ricin A chain can be chemically cross-linked to the mammalian ribosomal proteins L9 and L10e. J Biol Chem 270:12933–12940

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  PubMed  CAS  Google Scholar 

  • Wales R, Roberts LM, Lord JM (1993) Addition of an endoplasmic reticulum retrieval sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J Biol Chem 268:23986–23990

    PubMed  CAS  Google Scholar 

  • Weng A, Bachran C, Fuchs H, Melzig MF (2008) Soapwort saponins trigger clathrin-mediated endocytosis of saporin, a type I ribosome-inactivating protein. Chem Biol Interact 176:204–211

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Day PJ, Hollis T, Monzingo AF, Schelp E, Robertus JD, Milne GWA, Wang S (1998) Recognition and interaction of small rings with the ricin A chain binding site. Proteins 31:33–41

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Chen CH, Zhang MS, Wu HC (1991) Disruption of the Golgi apparatus by brefeldin-A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp Cell Res 192:389–395

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Huang AH (1976) Protein bodies from the endosperm of castor bean: subfractionation, protein components, lectins, and changes during germination. Plant Physiol 58:703–709

    Article  PubMed  CAS  Google Scholar 

  • Zarovni N, Vago R, Soldà T, Monaco L, Fabbrini MS (2007) Saporin as a novel suicide gene in anticancer gene therapy. Cancer Gene Ther 14:165–173

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Sun S, Feng D, Zhao WL, Sui SF (2009) A novel strategy for the invasive toxin: hijacking exosome-mediated intercellular trafficking. Traffic 10:411–424

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Fu Z, Chen M, Lin Y, Pan K (1994) Structure of trichosanthin at 1.88 Å resolution. Proteins 19:4–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is partially supported by the charity Leukaemia Busters (www.leukaemiabusters.org.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Ceriotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lombardi, A., Marshall, R.S., Savino, C., Fabbrini, M.S., Ceriotti, A. (2010). Type I Ribosome-Inactivating Proteins from Saponaria officinalis . In: Lord, J., Hartley, M. (eds) Toxic Plant Proteins. Plant Cell Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12176-0_4

Download citation

Publish with us

Policies and ethics