Skip to main content

RNA N-Glycosidase Activity of Ribosome-Inactivating Proteins

  • Chapter
  • First Online:
Book cover Toxic Plant Proteins

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 18))

  • 876 Accesses

Abstract

Mammalian and bacterial ribosomes have ribosomal RNAs comprising 7,000 and 5,000 nucleotides, respectively. The RNA N-glycosidase activity of ricin and other ribosome-inactivating proteins (RIPs) specifically catalyzes removal of single adenine in the sarcin/ricin loop of the largest (28S or 23S) rRNA. Breakage of this single N-glycosidic bond is entirely responsible for the cytotoxicity. Ricin recognizes a highly ordered three-dimensional structure of the sarcin/ricin domain, which directly interacts with elongation factors to help switching through different states of the ribosome during the translation elongation cycle. Plants have an enzyme that specifically cleaves the phophodiester bond at the depurinated ricin site of 28S rRNA, named ribosomal RNA apurinic site-specific lyase (RALyase). The set of RIP and RALyase and the depurination and cleavage of the 28S rRNA are likely to have a role in senescence in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chan YL, Endo Y, Wool IG (1983) The sequence of the nucleotides at the α-sarcin cleavage site in rat 28S ribosomal ribonucleic acid. J Biol Chem 258:12768–12770

    PubMed  CAS  Google Scholar 

  • Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schüler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S, Spahn CMT (2007) Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 25:751–764

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Munishkin A, Chan YL, Ren Z, Wool IG, Steitz TA (1998) Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci USA 95:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Wool IG, Munishkin A (1999) The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 Å resolution. J Mol Biol 292:275–287

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262:8128–8130

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    PubMed  CAS  Google Scholar 

  • Endo Y, Wool IG (1982) The site of action of α-sarcin on eukaryotic ribosomes. The sequence at the α-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem 257:9054–9060

    PubMed  CAS  Google Scholar 

  • Endo Y, Huber PW, Wool IG (1983) The ribonuclease activity of the cytotoxin α-sarcin. The characteristics of the enzymatic activity of α-sarcin with ribosomes and ribonucleic acids as substrates. J Biol Chem 258:2662–2667

    PubMed  CAS  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T, Igarashi K (1988a) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 171:45–50

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Lambert JM (1988b) The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: the RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun 150:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Franz H (1988c) The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes. The RNA N-glycosidase activity of the protein. FEBS Lett 231:378–380

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Ebert RF (1988d) The mechanism of action of barley toxin: a type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochim Biophys Acta 954:224–226

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Chan YL, Lin A, Tsurugi K, Wool IG (1988e) The cytotoxins α-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. J Biol Chem 263:7917–7920

    PubMed  CAS  Google Scholar 

  • Endo Y, Oka T, Tsurugi K, Franz H (1989) The mechanism of action of the cytotoxic lectin from Phoradendron californicum: the RNA N-glycosidase activity of the protein. FEBS Lett 248:115–118

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Glück A, Chan YL, Tsurugi K, Wool IG (1990) RNA–protein interaction. An analysis with RNA oligonucleotides of the recognition by α-sarcin of a ribosomal domain critical for function. J Biol Chem 265:2216–2222

    PubMed  CAS  Google Scholar 

  • Endo Y, Glück A, Wool IG (1991) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. J Mol Biol 221:193–207

    Article  PubMed  CAS  Google Scholar 

  • Furutani M, Kashiwagi K, Ito K, Endo Y, Igarashi K (1992) Comparison of the modes of action of a Vero toxin (a Shiga-like toxin) from Escherichia coli, of ricin, and of α-sarcin. Arch Biochem Biophys 293:140–146

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Agrawal RK, Spahn CM, Grassucci RA, Svergun DI, Frank J, Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100:537–549

    Article  PubMed  CAS  Google Scholar 

  • Glück A, Endo Y, Wool IG (1992) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J Mol Biol 226:411–424

    Article  PubMed  Google Scholar 

  • Glück A, Endo Y, Wool IG (1994) The ribosomal RNA identity elements for ricin and for α-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res 22:321–324

    Article  PubMed  Google Scholar 

  • Ito Y, Ozawa A, Sawasaki T, Endo Y, Ochi K, Tozawa Y (2002) OsRALyase1, a putative F-box protein identified in rice, Oryza sativa, with enzyme activity identical to that of wheat RALyase. Biosci Biotechnol Biochem 66:2727–2731

    Article  PubMed  CAS  Google Scholar 

  • Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 97:559–564

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364

    Article  PubMed  CAS  Google Scholar 

  • Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara T, Sawasaki T, Morishita R, Ozawa A, Madin K, Endo Y (1999) A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. EMBO J 18:6522–6531

    Article  PubMed  CAS  Google Scholar 

  • Olson BH, Goerner GL (1965) Alpha sarcin, a new antitumor agent. I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl Microbiol 13:314–321

    PubMed  CAS  Google Scholar 

  • Olson BH, Jennings JC, Roga V, Junek AJ, Schuurmans DM (1965) Alpha sarcin, a new antitumor agent. II. Fermentation and antitumor spectrum. Appl Microbiol 13:322–326

    PubMed  CAS  Google Scholar 

  • Ozawa A, Sawasaki T, Takai K, Uchiumi T, Hori H, Endo Y (2003) RALyase; a terminator of elongation function of depurinated ribosomes. FEBS Lett 555:455–458

    Article  PubMed  CAS  Google Scholar 

  • Roberts WK, Stewart TS (1979) Purification and properties of a translation inhibitor from wheat germ. Biochemistry 18:2615–2621

    Article  PubMed  CAS  Google Scholar 

  • Sawasaki T, Nishihara M, Endo Y (2008) RIP and RALyase cleave the sarcin/ricin domain, a critical domain for ribosome function, during senescence of wheat coleoptiles. Biochem Biophys Res Commun 370:561–565

    Article  PubMed  CAS  Google Scholar 

  • Schindler DG, Davies JE (1977) Specific cleavage of ribosomal RNA caused by alpha sarcin. Nucleic Acids Res 4:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Spahn CMT, Gomez-Lorenzo MG, Grassucci RA, Jφrgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JPG, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Rodnina MV, Wieden H, Zemlin F, Wintermeyer W, van Heel M (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol 9:849–854

    PubMed  CAS  Google Scholar 

  • Stirpe F (1982) On the action of ribosome-inactivating proteins: are plant ribosomes species-specific? Biochem J 202:279–280

    PubMed  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  PubMed  CAS  Google Scholar 

  • Szewczak AA, Moore PB (1995) The sarcin/ricin loop, a modular RNA. J Mol Biol 247:81–98

    Article  PubMed  CAS  Google Scholar 

  • Szewczak AA, Moore PB, Chang YL, Wool IG (1993) The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci USA 90:9581–9585

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Sato N, Wada A, Hachimori A (1999) Interaction of the sarcin/ricin domain of 23 S ribosomal RNA with proteins L3 and L6. J Biol Chem 274:681–686

    Article  PubMed  CAS  Google Scholar 

  • Wool IG, Glück A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaeta Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takai, K., Sawasaki, T., Endo, Y. (2010). RNA N-Glycosidase Activity of Ribosome-Inactivating Proteins. In: Lord, J., Hartley, M. (eds) Toxic Plant Proteins. Plant Cell Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12176-0_2

Download citation

Publish with us

Policies and ethics